Search

BIO DESIGN

pISSN 1225-8962
eISSN 2287-982X

Article

Article

Review Article

Split Viewer

Phys. Ther. Korea 2021; 28(1): 1-12

Published online February 20, 2021

https://doi.org/10.12674/ptk.2021.28.1.1

© Korean Research Society of Physical Therapy

The Literature Review on the Effectiveness of Fall-related Hip Fracture Prevention Programs

Se-young Lee , PT, BPT, Seung-su Kim , PT, BPT, Kitaek Lim , PT, BPT, Woochol Joseph Choi , PT, PhD

Injury Prevention and Biomechanics Laboratory, Department of Physical Therapy, Yonsei University, Wonju, Korea

Correspondence to: Woochol Joseph Choi
E-mail: wcjchoi@yonsei.ac.kr
https://orcid.org/0000-0002-6623-3806

Received: January 11, 2021; Revised: January 26, 2021; Accepted: January 27, 2021

While efforts have been made to address fall-related injuries in older adults, the problem is unsolved to date. The purpose of this review is to provide a guideline for fall and injury prevention programs in older adults, based on evidence generated over the past 30 years. Research articles published between 1990 and 2020 have been searched on PubMed, using keywords, including but not limited to, falls, hip fracture, injuries, intervention, older adults, prevention, hip protector, vitamin D, safe landing strategy, and exercise. Total of 98 articles have been found and categorized into five intervention areas: exercise program, hip protector, safe landing strategy, vitamin D intake, and compliant flooring. Furthermore, the articles have been rated based on their study design: class 1, randomized controlled trials; class 2, nonrandomized controlled trials; class 3, experimental studies; class 4, all other studies. Exercise programs have shown to decrease the risk of fall, and associated injuries. Hip protectors, safe landing strategy, and vitamin D intake were effective in reducing a risk and incidence of hip fracture during a fall. Furthermore, compliant flooring has also decreased hip fracture risk without affecting balance. An integrated approach combining exercise program, wearing a hip protector, teaching safe landing strategies, scheduled vitamin D intake, and compliant flooring installation, is suggested to address fall-related injuries in older adults.

Keywords: Exercise, Falls, Hip fracture, Intervention, Older adults, Prevention

노인 낙상을 줄이기 위해 많은 노력이 있었음에도 불구하고 지난 10여년간 노인의 넘어짐으로 인한 사망률은 지속적으로 증가했고, 2030년까지 시간당 7명의 사망률을 예측하고 있다[1]. 연구결과를 바탕으로 여러 중재법이 제시되어 오고 있음에도 불구하고, 노인 낙상 문제가 쉽게 해결되지 않는 이유는 증가하는 노인 인구에 있기도 하지만, 왜 넘어지고, 어떤 넘어짐이 골절을 유발하는지에 대한 불명확한 이해가 이유이기도 하다. 실제로 1%–2%의 노인의 넘어짐만이, 생명을 위협하는 고관절 골절을 일으키는데[2], 왜 그런지에 대한 명확한 이해는 부족한 실정이다. 다행히도 연구자들의 노력으로 골절 위험도에 영향을 미치는 10여 가지의 생체역학적 요인들이 확인되었고, 이를 바탕으로 중재법들이 제안되어 오고 있지만, 완전한 이해를 위해서는 지속적인 연구가 필요한 실정이다.

본 리뷰의 목적은, 현재까지 제시된 증거 기반 노인 넘어짐 및 고관절 골절 예방프로그램의 효과를 고찰하고, 노인 낙상예방을 위한 통합적인 중재법의 방향성을 제시함에 있다. 이를 위해, 현재까지 알려진 노인 낙상 예방 중재 방법을 운동프로그램(i.e., 균형능력증진, 근력강화, 지구력강화 등), 고관절 보호대의 사용, 안전하게 넘어지는 전략 (i.e., 구르기, 엉덩이와 무릎이 동시에 바닥에 닿기 등), 비타민 D 섭취, 그리고 충격 흡수 매트 등 5가지 영역으로 나누고, 각 영역별로 현재까지 출판된 논문을 정리하여 고찰하였다.

1. 논문 검색 및 분류 방법

1990년부터 2020년까지 출판된 논문들이 PubMed를 통해 검색되었다. 사용된 키워드로는 Falls, hip fracture, injuries, intervention, older adults, prevention, hip protector, vitamin D, safe landing strategy, exercise 등을 포함했다. 검색 결과, 308개의 영어 논문이 검색되었으나, 종설 논문과 초록 및 원문 확인이 불가한 원저 논문, 그리고 Journal Citation Report에 색인되어 있지 않은 논문을 제외하여 총 117편의 논문이 확인되었다. Physical Therapy Korea 종설 논문 참고문헌 개수 제한에 따라 journal impact factor percentile 하위 19개의 논문을 제외하고, 총 98편의 논문이 운동프로그램(44편), 고관절 보호대(28편), 안전하게 넘어지는 전략(13편), 비타민 D 섭취(9편), 그리고 충격 흡수 매트(6편) 등 5가지 영역으로 나뉘어 고찰되었다(Table 1). 또한, 연구 논문 결과의 영향력을 구분하기 위해, 연구 디자인에 따라 다음의 네 개의 등급으로 나누어 고찰하였다. 1등급, 무작위대조실험연구(randomized controlled trials); 2등급, 대조실험연구(non-randomized controlled trials); 3등급, 대조군 없는 실험 연구(experimental studies); 4등급, 1, 2, 3등급에 속하지 않은 모든 유형의 연구(i.e., case study 등).

Table 1 . The number of articles included in this review.

InterventionsClass of evidenceaTotal

1234
Exercise programs3328144
Hip protector1459028
Safe landing strategy049013
Vitamin D intake81009
Compliant flooring12306

aClass 1: randomized controlled trials. Class 2: non-randomized controlled trials. Class 3: experimental studies with no control group. Class 4: studies not belonging to Class 1, 2, and 3 (i.e., case study).


1. 운동프로그램

노인의 균형 능력 증진을 통한 낙상예방을 위한 운동중재는 다양한 연구에서 검증되었으며, 연구들의 결과 변수에 따라 정적 균형, 동적 균형, 통합 균형(정적 균형과 통합 균형을 함께 확인하는 결과변수), 설문지, 넘어짐 또는 골절 횟수로 나누어 고찰되었다.

1) 정적 균형

압력 중심점의 궤도(trajectory of center of pressure)를 통해 균형 증진이 확인된 운동은 갑작스러운 속도 변화 훈련(unexpected perturbations training), 다감각 훈련(multisensory training), 시각 유도 무게 이동(visually guided weight-shifting), 보수와 스위스볼(Bosu and Swiss ball), 그룹 운동(group exercise) 등이 있었다(Table 2) [3-14]. 기능적 팔 뻗기 검사를 통해 균형 능력 증진이 확인된 운동은 태극권(Tai Chi), 흉부골반 보조 운동(thoracopelvic assisted movement) 등이 있었다. 한발 서기 검사를 통해 균형 증진을 확인한 운동은 그룹 운동(group exercise)이 있었다. 그 외 컴퓨터 게임을 적용하여 균형을 잃은 횟수를 통해 균형 능력 증진을 확인하였으며, 그룹 운동을 적용하여 균형감각조절임상검사를 통해 균형 능력 증진을 확인하였다.

Table 2 . Effect of exercise on static balance.

ArticlesClass of evidenceInterventionsOutcomesImprove
Kurz et al., 2016 [3]1Unexpected perturbation trainingCOPYes
Alfieri et al., 2012 [4]1Multisensory trainingCOPYes
Hatzitaki et al., 2009 [5]1Visually guided weight-shiftingCOPYes
Li et al., 2004 [6]1Tai ChiFRTYes
Cyarto et al., 2008 [7]1Group exerciseOLSYes
Szturm et al., 2011 [8]1Interactive computer gameLoss of balanceYes
Barnett et al., 2003 [9]1Group exerciseCOPYes
Jorgensen et al., 2013 [10]1Nintendo WiiCOPNo
Martínez-Amat et al., 2013 [11]2Bosu and Swiss ballCOPYes
Bulat et al., 2007 [12]3Group exercise1. COP2. CTSIB1. Yes2. Yes
Springer et al., 2018 [13]3Thoracopelvic assisted movementFRTYes
Sung et al., 2018 [14]4Tai ChiFRTYes

COP, center of pressure; FRT, functional reach test; OLS, one leg standing test; CTSIB, clinical test of sensory integration on balance.


2) 동적 균형

보행 속도 확인을 통해 균형 증진을 확인한 운동중재에는 노르딕 보행(Nordic walking), 흔들의자 가정기반운동(home-based rocking chair exercise), 강렬한 운동(intensive exercise), 시각 보조 트레드밀(projected visual context treadmill), 장기간 강화 및 균형 훈련(long-term strength and balance training), 넘어짐 예방 프로그램(fall prevention program), 흉부골반 보조 운동(thoracopelvic assisted movement), 태극권(Tai Chi), 이중 작업 훈련(dual-task training)이 있었다(Table 3) [15-23]. 보행 변수들을 통해 균형 증진을 확인한 운동은 이중 작업 훈련(dual-task training)이 있었다. 동적 보행 지수를 통해 균형 증진을 확인한 운동은 이중 작업 훈련(dual-task training), 태극권(Tai Chi), 물리치료중재(physical therapeutic intervention)가 있었다. 보행 중 총 이동거리를 통해 균형 증진을 확인한 운동은 수정된 오타고 운동 프로그램(modified Otago exercise program)이 있었다.

Table 3 . Effect of exercise on dynamic balance.

ArticlesClass of evidenceInterventionsOutcomesImprove
Gomeñuka et al., 2019 [15]1Nordic walkingGait speedYes
Niemelä et al., 2011 [16]1Home-based rocking-chair exerciseGait speedYes
Oh et al., 2012 [17]1Intensive exerciseGait speedYes
van Ooijen et al., 2016 [18]1Projected visual context treadmillGait speedYes
Li et al., 2004 [6]1Tai ChiDynamic gait indexYes
Wolf et al., 2001 [19]1Physical therapeutic interventionDynamic Gait IndexYes
Conradsson and Halvarsson, 2019 [20]1Dual-task balance trainingGait parametersYes
Barnett et al., 2003 [9]1Group exerciseGait speedNo
Springer et al., 2018 [13]3Thoracopelvic assisted movementGait speedYes
Li, 2014 [21]3Tai ChiGait speedYes
Dorfman et al., 2014 [22]3Dual-task training1. Gait speed2. Dynamic gait index1. Yes2. Yes
Renfro et al., 2016 [23]3Modified Otago exercise programTotal walk distanceYes

3) 통합 균형

정적 및 동적 균형을 함께 측정할 수 있는 임상균형측정 도구는 버그균형척도(Berg Balance scale, BBS), 일어서서 걷기검사(Timed Up and Go, TUG), 실행지향움직임 평가(Tinetti Performance Oriented Mobility Assessment, POMA), 플러턴 어드밴스드 균형척도(Fullernton Advanced Balance Scale), 의자에서 일어나기(Chair stand test), 8-foot up-and-go test, 수정된 운동수행검사(Physical Performance Test), 간편신체기능검사(Short Physical Performance Battery, SPPB) 등 다양했는데, 이러한 임상균형측정 도구를 이용해 균형 능력 증진을 확인한 운동은 더욱더 다양했다(Table 4) [24-36].

Table 4 . Effect of exercise on balance (studies using clinical balance measurement tools).

ArticlesClass of evidenceInterventionsOutcomesImprove
Binder et al., 2002 [24]1Intensive exercise trainingPerformance testYes
Cyarto et al., 2008 [7]1Group-based resistance and balancetraining8-foot up-and-go testYes
Frih et al., 2018 [25]1Combined exercise1. TUG2. Tinetti3. BBS1. Yes2. Yes3. Yes
Irandoust et al., 2019 [26]1Aquatic exerciseTinettiYes
Jorgensen et al., 2013 [10]1Nintendo Wii1. TUG2. Chair stand test1. Yes2. Yes
Lai et al., 2013 [27]1Video game with exercise1. BBS2. TUG1. Yes2. Yes
Leiros-Rodríguez and García-Soidan,2014 [28]1Balance training1. BBS2. TUG1. Yes2. Yes
Li et al., 2004 [6]1Tai ChiBBSYes
Li et al., 2018 [29]1Biofeedback balance training withfunctional electrical stimulationBBSYes
Mihailov and Popa, 2010 [30]1Long term exercise1. Tinetti2. TUG1. Yes2. Yes
Niemelä et al., 2011 [16]1Home-based rocking-chair exerciseBBSYes
Pollock et al., 2012 [31]1Whole body vibration with strengthand balance exerciseTUGYes
Pooranawatthanakul andFoongchomcheay, 2015 [32]1Video game (Wii)-based exercise1. BBS2. Fullerton1. Yes2. Yes
Steadman et al., 2003 [33]1Enhanced balance trainingBBSYes
Wolf et al., 2001 [19]1Balance trainingBBSYes
Zhang et al., 2014 [34]1Whole body vibrationTUGYes
Szturm et al., 2011 [8]1Interactive computer game exercise1. BBS2. TUG1. Yes2. No
Hale et al., 2012 [35]1Water based exerciseTUGNo
Sherrington et al., 2020 [36]1Recovery exercise after fractureSPPBNo
Martínez-Amat et al., 2013 [11]2Proprioception training1. BBS2. Tinetti1. Yes2. Yes
Bulat et al., 2007 [12]3Functional balance trainingBBSYes
Dorfman et al., 2014 [22]3Dual tasking on treadmillBBSYes
Li, 2014 [21]3Tai ChiTUGYes
Springer et al., 2018 [13]3Thoracopelvic assisted movement trainingTUGYes

4) 설문지

넘어짐 효능감 척도(fall efficacy scale)를 통해 균형 증진을 확인한 운동은 닌텐도 위(Nintendo Wii), 태극권(Tai Chi), 상호작용 비디오 게임(interactive video game), 기능적 전기 자극을 통한 시각 되먹임 기반 훈련(visual feedback based training with functional electric stimulation), 가정기반 운동 프로그램(home-based exercise program), 전신 진동(whole body vibration)이 있었다(Table 5) [37-43]. 행동특이적 균형 자신감 척도(activities-specific Balance Confidence Scale)를 통해 균형 증진을 확인한 운동은 지구력 저항 운동(endurance-resistance exercise), 니즈메겐 넘어짐 예방 프로그램(Nijmegen fall prevention program), 상호작용 컴퓨터 게임(interactive computer game), 전신 진동(whole body vibration)이 있었다. 두려움 척도(fear of falling)를 통해 균형 증진을 확인한 운동은 시각 보조 트레드밀(projected visual context treadmill), 기능적 순환 훈련(functional circuit training), 시각적 되먹임 균형 훈련(visual feedback based balance training), 태극권(Tai Chi)이 있었다.

Table 5 . Effect of exercise on balance (studies using questionnaires).

ArticlesClass of evidenceInterventionsOutcomesImprove
Frih et al., 2018 [25]1Endurance-resistance exerciseABCYes
Smulders et al., 2010 [37]1Nijmegen fall prevention programABCYes
Szturm et al., 2011 [8]1Interactive computer gameABCYes
Zhang et al., 2014 [34]1Whole body vibrationABCYes
Jorgensen et al., 2013 [10]1Nintendo WiiFESYes
Lai et al., 2013 [27]1Interactive video gameFESYes
Li et al., 2018 [29]1Visual feedback-based training with functionalelectric stimulationFESYes
Pollock et al., 2012 [31]1Whole body vibrationFESYes
van Ooijen et al., 2016 [18]1Projected visual context treadmillFear of fallingYes
Giné-Garriga et al., 2013 [38]1Functional circuit trainingFear of fallingYes
Sihvonen et al., 2004 [39]1Visual feedback-based balance trainingFear of fallingYes
Wolf et al., 1996 [40]1Tai ChiFear of fallingYes
Zeeuwe et al., 2006 [41]1Tai ChiFear of fallingYes
Cyarto et al., 2008 [7]1Group exerciseABCNo
Hale et al., 2012 [35]1Water-based exerciseABCNo
Kurz et al., 2016 [3]1Unexpected perturbations trainingFESNo
Barnett et al., 2003 [9]1Group exerciseFear of fallingNo
Wolf et al., 2001 [19]1Physical therapeutic interventionFear of fallingNo
Miller et al., 2010 [42]3Home-based exercise programFESYes
Groen et al., 2010 [43]3Martial artsFear of fallingYes

ABC, activities-specific balance confidence scale; FES, fall efficacy scale.


5) 넘어짐 및 골절 횟수

넘어짐 횟수(number of falls) 및 골절 횟수(fracture incidence)를 통해 낙상예방 효과를 확인한 운동은 가정 기반 운동(home based exercise), 가상 현실을 이용한 균형 운동(balance exercise with using virtual reality), 기능적 전기 자극을 함께 사용한 시각 되먹임 기반 힘판 훈련(visual feedback-based force platform training with functional electrical stimulation), 칼슘-비타민 보충제 복용과 함께한 운동(exercise with calcium and vitamin supplement), 시각 보조 트레드밀 (treadmill training with projected visual context), RESTORE 치료(RESTORE intervention) 등이 있었다(Table 6) [44-46].

Table 6 . Effect of exercise on fall and fracture incidence.

ArticlesClass of evidenceInterventionsOutcomesImprove
Campbell et al., 1997 [44]1Home based exerciseFall incidenceYes
Duque et al., 2013 [45]1Balance exercise using Virtual RealityFall incidenceYes
Li et al., 2018 [29]1Visual feedback-based force platform trainingwith functional electrical stimulation1. Fall incidence2. Fracture incidence1. Yes2. Yes
Sihvonen et al., 2004 [39]1Biofeedback balance trainingFall incidenceYes
Swanenburg et al., 2007 [46]1Exercise with calcium and vitamin supplementFall incidenceYes
van Ooijen et al., 2016 [18]1Treadmill training with projected visual contextFall incidenceNo
Sherrington et al., 2020 [36]1RESTORE interventionFall incidenceNo


2. 고관절 보호대

노인의 넘어질 때 발생하는 고관절 골절예방을 위한 고관절 보호대 효과를 검증한 연구에서 사용된 결과 변수로는 골절 발생률(hip fracture incidence), 넘어짐 및 부상에 대한 두려움(fear of fall and injury risk), 충격힘 등이 있었다. 넘어지는 상황에서 고관절 보호대가 잘 착용되어 있으면, 대퇴골에 가해지는 충격힘을 상당히 줄어서, 골절 발생률을 줄일 수 있었을 뿐 아니라, 넘어짐 및 부상에 대한 두려움도 상당히 감소됨을 확인할 수 있었다(Table 7) [47-74].

Table 7 . Effect of a hip protector on fall-related hip fracture risk.

ArticlesClass of evidenceInterventionsOutcomesImprove
Bentzen et al., 2008 [47]1Hip protectorHip fracture incidenceYes
Cameron et al., 2000 [48]1Hip protectorFear of fall and injury riskYes
Kannus et al., 2000 [49]1Hip protectorHip fracture incidenceYes
Koike et al., 2009 [50]1Hip protectorHip fracture incidenceYes
Lauritzen et al., 1993 [51]1Hip protectorHip fracture incidenceYes
Meyer et al., 2003 [52]1Hip protectorHip fracture incidenceYes
Cameron et al., 2011 [53]1Hip protector1. Fear of fall and injury risk2. Hip fracture incidence1. No2. No
Cameron et al., 2011 [54]1Hip protectorFear of fall and injury riskNo
Cameron et al., 2003 [55]1Hip protector1. Fear of fall and injury risk2. Hip fracture incidence1. No2. No
Birks et al., 2004 [56]1Hip protectorHip fracture incidenceNo
Kiel et al., 2007 [57]1Hip protectorHip fracture incidenceNo
O'Halloran et al., 2004 [58]1Hip protectorHip fracture incidenceNo
van Schoor et al., 2003 [59]1Hip protectorHip fracture incidenceNo
Birks et al., 2003 [60]1Hip protectorHip fracture incidenceNo
Harada et al., 2001 [61]2Hip protectorHip fracture incidenceYes
Garfinkel et al., 2008 [62]2Hip protectorHip fracture incidenceYes
Juby, 2009 [63]2Hip protectorHip fracture incidenceYes
Korall et al., 2019 [64]2Hip protectorHip fracture incidenceYes
Woo et al., 2003 [65]2Hip protectorHip fracture incidenceYes
Bentzen et al., 2008 [66]3Hip protectorHip fracture incidenceYes
Forsén et al., 2003 [67]3Hip protectorHip fracture incidenceYes
Honkanen et al., 2005 [68]3Hip protectorHip fracture incidenceYes
O'Halloran et al., 2007 [69]3Hip protectorHip fracture incidenceNo
Laing et al., 2011 [70]3Hip protectorHip impact forceYes
Laing and Robinovitch, 2008 [71]3Hip protectorHip impact forceYes
Laing and Robinovitch, 2008 [72]3Hip protectorHip impact forceYes
Choi et al., 2010 [73]3Hip protectorHip impact forceYes
Choi et al., 2010 [74]3Hip protectorHip impact forceYes


3. 안전하게 넘어지는 전략

넘어지는 방법에 따라 엉덩이가 바닥에 닿을 때 대퇴골에 가해지는 충격힘을 줄여 고관절 골절 위험도를 크게 낮출 수 있었는데, 안전한 넘어짐 전략은 넘어질 때 고관절 근 수축(hip muscle contraction), 무술(martial arts), 충격 시 몸통 및 무릎의 위치(trunk and knee position), 골반 충격 각도(pelvis impact angle), 팔 위치(arm configuration) 등이 있었다(Table 8) [75-86]. 특히 무술(martial arts), 목 근육 활성도(neck muscle activation) 등은 충격 속도를 줄여 골절 위험을 크게 낮추었다. 대퇴경부에 발생하는 스트레스 또는 축방향 힘을 줄인 전략은 고관절 벌림근력(hip abductor muscle forces), 충격 시 무릎의 위치(knee boundary conditions), 골반 충격 각도(pelvis impact angle)이 있었다.

Table 8 . Effect of safe landing strategies on fall-related hip fracture risk.

ArticlesClass of evidenceInterventionsOutcomesImprove
Martel et al., 2018 [75]2Hip muscle contractionHip impact forceYes
Pretty et al., 2017 [76]2Hip muscle contractionHip impact forceYes
Groen et al., 2007 [77]2Martial arts1. Hip impact force2. Hip impact velocity1. Yes2. Yes
Weerdesteyn et al., 2008 [78]2Martial arts1. Hip impact force2. Hip impact velocity1. Yes2. Yes
Robinovitch et al., 1997 [79]3Trunk positionHip impact forceYes
van der Zijden et al., 2012 [80]3Martial artsHip impact forceYes
Lim and Choi, 2020 [81]3Knee boundary conditionHip impact forceYes
Choi et al., 2010 [73]3Pelvis impact angleHip impact forceYes
DeGoede and Ashton-Miller, 2002 [82]3Arm configurationHip impact forceYes
Choi et al., 2017 [83]3Neck muscle activationHip impact velocityYes
Lo and Ashton-Miller, 2008 [84]3Segment movementHip impact forceYes
Choi et al., 2015 [85]3Hip abductor muscle forces,Knee boundary conditions1. Femoral neck stress2. Femoral neck force1. Yes2. Yes
Choi and Robinovitch, 2018 [86]3Pelvis impact angle1. Femoral neck stress2. Femoral neck force1. Yes2. Yes


4. 비타민 D 섭취

비타민 D 섭취가 낙상 예방에 미치는 효과를 검증한 연구들은 넘어짐 및 부상률(fall and injury rate), 넘어짐 위험률(fall risk), 균형 능력(balance), 자세불안정성(posture instability) 등의 결과 변수를 사용하였다. 비타민 D 섭취는 노인의 넘어짐 및 부상률뿐만 아니라 균형능력이 증진되어 넘어짐 위험률을 효과적으로 감소시켰다(Table 9) [87-94].

Table 9 . Effect of vitamin D intake on fall-related hip fracture risk.

ArticlesClass of evidenceInterventionsOutcomesImprove
Uusi-Rasi et al., 2015 [87]1Vitamin D (800 IU)Fall and injury rateYes
Bischoff-Ferrari et al., 2016 [88]1Vitamin DFall and injury rateYes
Smith et al., 2017 [89]1Vitamin D (4,000–4,800 IU)Fall and injury rateYes
Bogaerts et al., 2011 [90]1Vitamin D with squat1. Fall and injury rate2. Balance1. Yes2. Yes
Swanenburg et al., 2007 [46]1Vitamin D with protein, balance exercise1. Fall risk2. Balance1. Yes2. Yes
Bischoff-Ferrari et al., 2006 [91]1Vitamin D and calciumFall riskYes
Law et al., 2006 [92]1Vitamin DFall and injury rateNo
Sanders et al., 2010 [93]1Vitamin DFall and injury rateNo
Boersma et al., 2012 [94]2Vitamin DPostural instabilityYes


5. 충격 흡수 매트

노인 낙상 위험도는 바닥재에 따라 큰 영향을 받았는데, 고무 재질의 충격 흡수 매트는 균형에 나쁜 영향을 미치지 않으면서, 넘어질 때 발생하는 충격힘을 줄임으로써, 넘어짐 및 골절 위험도를 크게 낮추었다(Table 10) [95-100].

Table 10 . Effect of compliant flooring on fall-related hip fracture risk.

ArticlesClass of evidenceInterventionsOutcomesImprove
Mackey et al., 2019 [95]1Compliant (low-stiffness) flooringFall and injury riskNo
Simpson et al., 2004 [96]2Wooden carpeted floorsFall and injuryYes
Laing and Robinovitch, 2009 [97]2Smart Cell (low- stiffness)Hip impactYes
Gustavsson et al., 2018 [98]3Compliant (low-stiffness) flooringFall and injury riskYes
Wright and Laing, 2011 [99]3Smart Cell and SofTileFemur peak forceYes
Gustavsson et al., 2015 [100]3Impact absorbing flooringFall and injury riskYes

1. 운동프로그램

태극권, 전신 진동을 이용한 운동 그리고 닌텐도 위를 활용한 운동프로그램은 다른 운동들과 비교하였을 때, 많은 수의 논문들이 출판되었으며 대부분 무작위 대조군 실험을 통해 정적, 동적, 그리고 통합 균형 및 넘어짐 효능감과 두려움에 대해 효과가 있음을 밝혔으므로, 본 문헌 고찰에서는 해당 운동들을 권장한다.

그 외에, 낙상 횟수의 감소에 영향이 있었던 7개의 운동들은 대부분 무작위 대조군 실험을 통해 효과를 증명하였다. 하지만, 7개의 연구 중, 고관절 골절 횟수를 결과 변수로 포함시킨 연구는 1개에 불과했다. 골절예방을 위한 운동프로그램의 확실한 효과를 확인하기 위해 더 많은 연구가 필요해 보인다.

2. 고관절 보호대

임상 연구 결과에 따라 고관절 보호대의 고관절 골절 예방 효과에 대해 긍정적으로 보기도 하고 부정적으로 보기도 했다. 그러나 생체역학 연구에서는 넘어질 때 올바르게 착용된 고관절 보호대는 충격힘을 최대 50%까지 줄일 수 있어 고관절 골절 예방에 큰 도움이 된다고 보고한다. 이는, 고관절 보호대의 처방뿐 아니라, 실제로 잘 착용하고 있는지에 대한 확인 및 교육이 중요함을 말해 준다. 따라서, 노인 본인뿐 아니라 관련 보건의료 인력들은 고관절 보호대의 적절한 사용을 교육 및 모니터링 할 필요가 있다.

3. 안전하게 넘어지는 전략

안전한 넘어짐 전략은 넘어짐으로 인한 심각한 손상을 예방하기 위하여 중요하다. 본 문헌 고찰에서 제시된 연구들로 제안된 전략들은 대부분 넘어지는 동안 고관절과 머리에 가해지는 충격에 대하여 초점이 맞춰져 있었다. 안전한 전략의 정도를 논하기 위해서 연구들에서는 보통 충격힘(impact force)와 충격 속도(impact velocity) 그리고 뼈에 가해지는 스트레스와 축 방향 힘(stresses and axial forces)을 결과변수로 사용하였으며, 제시된 전략은 무술 동작을 하는 것(martial arts), 다른 방향으로 골반에 충격이 가도록 넘어지는 것(pelvis impact angle), 신체 분절의 위치를 바꿔 넘어지는 것(segment movement), 넘어지는 동안 근 수축을 하는 것(muscle activation during a fall)이 있었으며, 제시된 방법 모두 효과가 있다고 보고되었다. 그러나, 본 연구에서는 넘어지는 동안 노인에게 미칠 영향을 알고자 하였으나, 대부분의 연구가 젊은 대상자에게 넘어짐 전략을 적용하거나, 고관절 충격 시뮬레이터를 이용하여 노인의 뼈에 가해질 충격을 예측하였다. 노인에게 직접적으로 실험을 진행할 수 없었던 것은 실험 간 발생할 가능성이 있는 문제(예를 들면, 골절 및 타박상)를 마주하지 않기 위해서였으나, Groen 등[43]은 실제 노인을 대상으로 무술 훈련이 충격힘을 8%까지 줄일 수 있다는 것을 보고하였다.

4. 비타민 D 섭취

노쇠한 노인(비타민 D의 결핍이 있는 노인)의 넘어짐과 부상률을 예방하기 위해 비타민 D의 섭취가 권장됐고, 고용량 비타민 D (800 IU) 이상의 섭취는 넘어짐 및 부상으로부터 본인을 보호할 수 있었다. 낙상예방프로그램에 규칙적인 비타민 D 섭취 포함, 혹은 국가 복지 사업으로 고위험군 노인에게 비타민 D 보급 등을 통한 적극적인 대응은 노인 낙상 문제를 해결하는 데 도움이 될 것이다. 뿐만 아니라, 비타민 D 섭취와 병행하여 칼슘 섭취 및 운동을 실행하면 낙상 예방에 더 효과적인 것으로 보인다.

5. 충격 흡수 매트

충격 흡수 매트는 노인의 넘어짐 및 부상 위험률을 증가시키지 않는다고 하였다. 이는 일부 낮은 강성의 표면이 균형 유지 및 균형 회복 능력을 손상시켜 낙상 위험을 증가시킬 수 있다는 우려를 불식시키는 연구 결과이다[97]. 오히려, 넘어질 때 발생하는 충격힘을 최대 50%까지 줄여, 골절 위험률을 줄이게 된다. 충격 흡수 매트는 균형과 안정성에 영향을 미치지 않음과 동시에 낙상 시 발생하는 엉덩이 충격힘을 크게 줄이므로, 낙상 고위험군이 많이 모여 있는 시설 내에 설치되어야 하는 바닥재로 평가된다.

6. 본 문헌 고찰의 제한점

본 연구의 제한점은 많은 데이터베이스 중에서 하나의 데이터베이스(PubMed)만 사용되었다는 것이다. PubMed는 의학분야에서 가장 흔하게 사용되는 데이터베이스이기 때문에 본 문헌 고찰 결과에 사실성이 보장된다고 할 수 있지만, 다른 데이터베이스를 통해 획득되는 증거들 또한 함께 고려해 보아야 한다.

7. 고찰 결과 요약

노인 낙상예방을 위한 통합적인 중재법의 방향성을 제시하기 위해, 현재까지 제시된 증거 기반 노인 넘어짐 및 고관절 골절 예방프로그램의 효과를 고찰하였다. 위에서 고찰한 바와 같이, 노인 낙상 예방을 위한 다섯 가지 중재방법은 연구방법에 따라 영향력의 차이는 있었지만, 모두 효과적이었다. 상기 고찰 결과는 효과적인 노인 낙상 예방 프로그램을 개발하는 데 도움을 줄 것이다.

This study was supported by the “Brain Korea 21 FOUR Project”, the Korean Research Foundation for Department of Physical Therapy in the Graduate School of Yonsei University.

No potential conflict of interest relevant to this article was reported.

Conceptualization: WJC. Data curation: SL, SK, KL. Formal analysis: SL, SK, KL. Investigation: SL, SK, KL. Methodology: SL, SK, KL, WJC. Project administration: WJC. Resources: WJC. Supervision: WJC. Writing - original draft: SL, SK, KL, WJC. Writing - review & editing: WJC.

  1. Burns E, Kakara R. Deaths from falls among persons aged ≥65 years - United States, 2007-2016. MMWR Morb Mortal Wkly Rep 2018;67(18):509-14.
    Pubmed KoreaMed CrossRef
  2. Sattin RW. Falls among older persons: a public health perspective. Annu Rev Public Health 1992;13:489-508.
    Pubmed CrossRef
  3. Kurz I, Gimmon Y, Shapiro A, Debi R, Snir Y, Melzer I. Unexpected perturbations training improves balance control and voluntary stepping times in older adults - a double blind randomized control trial. BMC Geriatr 2016;16:58.
    Pubmed KoreaMed CrossRef
  4. Alfieri FM, Riberto M, Gatz LS, Ribeiro CP, Lopes JA, Battistella LR. Comparison of multisensory and strength training for postural control in the elderly. Clin Interv Aging 2012;7:119-25.
    Pubmed KoreaMed CrossRef
  5. Hatzitaki V, Amiridis IG, Nikodelis T, Spiliopoulou S. Direction-induced effects of visually guided weight-shifting training on standing balance in the elderly. Gerontology 2009;55(2):145-52.
    Pubmed CrossRef
  6. Li F, Harmer P, Fisher KJ, McAuley E. Tai Chi: improving functional balance and predicting subsequent falls in older persons. Med Sci Sports Exerc 2004;36(12):2046-52.
    Pubmed CrossRef
  7. Cyarto EV, Brown WJ, Marshall AL, Trost SG. Comparative effects of home- and group-based exercise on balance confidence and balance ability in older adults: cluster randomized trial. Gerontology 2008;54(5):272-80.
    Pubmed CrossRef
  8. Szturm T, Betker AL, Moussavi Z, Desai A, Goodman V. Effects of an interactive computer game exercise regimen on balance impairment in frail community-dwelling older adults: a randomized controlled trial. Phys Ther 2011;91(10):1449-62.
    Pubmed CrossRef
  9. Barnett A, Smith B, Lord SR, Williams M, Baumand A. Community-based group exercise improves balance and reduces falls in at-risk older people: a randomised controlled trial. Age Ageing 2003;32(4):407-14.
    Pubmed CrossRef
  10. Jorgensen MG, Laessoe U, Hendriksen C, Nielsen OB, Aagaard P. Efficacy of Nintendo Wii training on mechanical leg muscle function and postural balance in community-dwelling older adults: a randomized controlled trial. J Gerontol A Biol Sci Med Sci 2013;68(7):845-52.
    Pubmed CrossRef
  11. Martínez-Amat A, Hita-Contreras F, Lomas-Vega R, Caballero-Martínez I, Alvarez PJ, Martínez-López E. Effects of 12-week proprioception training program on postural stability, gait, and balance in older adults: a controlled clinical trial. J Strength Cond Res 2013;27(8):2180-8.
    Pubmed CrossRef
  12. Bulat T, Hart-Hughes S, Ahmed S, Quigley P, Palacios P, Werner DC, et al. Effect of a group-based exercise program on balance in elderly. Clin Interv Aging 2007;2(4):655-60.
    Pubmed KoreaMed CrossRef
  13. Springer S, Friedman I, Ohry A. Thoracopelvic assisted movement training to improve gait and balance in elderly at risk of falling: a case series. Clin Interv Aging 2018;13:1143-9.
    Pubmed KoreaMed CrossRef
  14. Sung WH, Liu CC, Wei SH, Chuang LR, Chuang E, Wang KA, et al. Feasibility and outcome of an individualized Tai Chi program for improving balance and strength in the elderly: a pilot study. NeuroRehabilitation 2018;43(4):509-18.
    Pubmed CrossRef
  15. Gomeñuka NA, Oliveira HB, Silva ES, Costa RR, Kanitz AC, Liedtke GV, et al. Effects of Nordic walking training on quality of life, balance and functional mobility in elderly: a randomized clinical trial. PLoS One 2019;14(1):e0211472.
    Pubmed KoreaMed CrossRef
  16. Niemelä K, Väänänen I, Leinonen R, Laukkanen P. Benefits of home-based rocking-chair exercise for physical performance in community-dwelling elderly women: a randomized controlled trial. Aging Clin Exp Res 2011;23(4):279-87.
    Pubmed CrossRef
  17. Oh DH, Park JE, Lee ES, Oh SW, Cho SI, Jang SN, et al. Intensive exercise reduces the fear of additional falls in elderly people: findings from the Korea falls prevention study. Korean J Intern Med 2012;27(4):417-25.
    Pubmed KoreaMed CrossRef
  18. van Ooijen MW, Roerdink M, Trekop M, Janssen TW, Beek PJ. The efficacy of treadmill training with and without projected visual context for improving walking ability and reducing fall incidence and fear of falling in older adults with fall-related hip fracture: a randomized controlled trial. BMC Geriatr 2016;16(1):215.
    Pubmed KoreaMed CrossRef
  19. Wolf B, Feys H, De Weerdt, van der Meer J, Noom M, Aufdemkampe G, et al. Effect of a physical therapeutic intervention for balance problems in the elderly: a single-blind, randomized, controlled multicentre trial. Clin Rehabil 2001;15(6):624-36.
    Pubmed CrossRef
  20. Conradsson D, Halvarsson A. The effects of dual-task balance training on gait in older women with osteoporosis: a randomized controlled trial. Gait Posture 2019;68:562-8.
    Pubmed CrossRef
  21. Li F. The effects of Tai Ji Quan training on limits of stability in older adults. Clin Interv Aging 2014;9:1261-8.
    Pubmed KoreaMed CrossRef
  22. Dorfman M, Herman T, Brozgol M, Shema S, Weiss A, Hausdorff JM, et al. Dual-task training on a treadmill to improve gait and cognitive function in elderly idiopathic fallers. J Neurol Phys Ther 2014;38(4):246-53.
    Pubmed CrossRef
  23. Renfro M, Bainbridge DB, Smith ML. Validation of evidence-based fall prevention programs for adults with intellectual and/or developmental disorders: a modified Otago exercise program. Front Public Health 2016;4:261.
    Pubmed KoreaMed CrossRef
  24. Binder EF, Schechtman KB, Ehsani AA, Steger-May K, Brown M, Sinacore DR, et al. Effects of exercise training on frailty in community-dwelling older adults: results of a randomized, controlled trial. J Am Geriatr Soc 2002;50(12):1921-8.
    Pubmed CrossRef
  25. Frih B, Mkacher W, Jaafar H, Frih A, Ben Salah Z, El May M, et al. Specific balance training included in an endurance-resistance exercise program improves postural balance in elderly patients undergoing haemodialysis. Disabil Rehabil 2018;40(7):784-90.
    Pubmed CrossRef
  26. Irandoust K, Taheri M, Mirmoezzi M, H'mida C, Chtourou H, Trabelsi K, et al. The effect of aquatic exercise on postural mobility of healthy older adults with endomorphic somatotype. Int J Environ Res Public Health 2019;16(22):4387.
    Pubmed KoreaMed CrossRef
  27. Lai CH, Peng CW, Chen YL, Huang CP, Hsiao YL, Chen SC. Effects of interactive video-game based system exercise on the balance of the elderly. Gait Posture 2013;37(4):511-5.
    Pubmed CrossRef
  28. Leiros-Rodríguez R, García-Soidan JL. Balance training in elderly women using public parks. J Women Aging 2014;26(3):207-18.
    Pubmed CrossRef
  29. Li Z, Wang XX, Liang YY, Chen SY, Sheng J, Ma SJ. Effects of the visual-feedback-based force platform training with functional electric stimulation on the balance and prevention of falls in older adults: a randomized controlled trial. PeerJ 2018;6:e4244.
    Pubmed KoreaMed CrossRef
  30. Mihailov MV, Popa DM. Long term efficacy of exercise in reducing falls in elderly people. Osteoporos Int 2010;21:S754-5.
  31. Pollock RD, Martin FC, Newham DJ. Whole-body vibration in addition to strength and balance exercise for falls-related functional mobility of frail older adults: a single-blind randomized controlled trial. Clin Rehabil 2012;26(10):915-23.
    Pubmed CrossRef
  32. Pooranawatthanakul K, Foongchomcheay A. Effect of video game commercial on short term balance training in Thai elderly. Physiotherapy 2015;101(Suppl 1):eS398.
    CrossRef
  33. Steadman J, Donaldson N, Kalra L. A randomized controlled trial of an enhanced balance training program to improve mobility and reduce falls in elderly patients. J Am Geriatr Soc 2003;51(6):847-52.
    Pubmed CrossRef
  34. Zhang L, Weng C, Liu M, Wang Q, Liu L, He Y. Effect of whole-body vibration exercise on mobility, balance ability and general health status in frail elderly patients: a pilot randomized controlled trial. Clin Rehabil 2014;28(1):59-68.
    Pubmed CrossRef
  35. Hale LA, Waters D, Herbison P. A randomized controlled trial to investigate the effects of water-based exercise to improve falls risk and physical function in older adults with lower-extremity osteoarthritis. Arch Phys Med Rehabil 2012;93(1):27-34.
    Pubmed CrossRef
  36. Sherrington C, Fairhall N, Kirkham C, Clemson L, Tiedemann A, Vogler C, et al. Exercise to reduce mobility disability and prevent falls after fall-related leg or pelvic fracture: RESTORE randomized controlled trial. J Gen Intern Med 2020;35(10):2907-16.
    Pubmed KoreaMed CrossRef
  37. Smulders E, Weerdesteyn V, Groen BE, Duysens J, Eijsbouts A, Laan R, et al. Efficacy of a short multidisciplinary falls prevention program for elderly persons with osteoporosis and a fall history: a randomized controlled trial. Arch Phys Med Rehabil 2010;91(11):1705-11.
    Pubmed CrossRef
  38. Giné-Garriga M, Guerra M, Unnithan VB. The effect of functional circuit training on self-reported fear of falling and health status in a group of physically frail older individuals: a randomized controlled trial. Aging Clin Exp Res 2013;25(3):329-36.
    Pubmed CrossRef
  39. Sihvonen S, Sipilä S, Taskinen S, Era P. Fall incidence in frail older women after individualized visual feedback-based balance training. Gerontology 2004;50(6):411-6.
    Pubmed CrossRef
  40. Wolf SL, Barnhart HX, Kutner NG, McNeely E, Coogler C, Xu T. Reducing frailty and falls in older persons: an investigation of Tai Chi and computerized balance training. Atlanta FICSIT Group. Frailty and injuries: cooperative studies of intervention techniques. J Am Geriatr Soc 1996;44(5):489-97.
    Pubmed CrossRef
  41. Zeeuwe PE, Verhagen AP, Bierma-Zeinstra SM, van Rossum E, Faber MJ, Koes BW. The effect of Tai Chi Chuan in reducing falls among elderly people: design of a randomized clinical trial in the Netherlands [ISRCTN98840266]. BMC Geriatr 2006;6:6.
    Pubmed KoreaMed CrossRef
  42. Miller KL, Magel JR, Hayes JG. The effects of a home-based exercise program on balance confidence, balance performance, and gait in debilitated, ambulatory community-dwelling older adults: a pilot study. J Geriatr Phys Ther 2010;33(2):85-91.
  43. Groen BE, Smulders E, de Kam D, Duysens J, Weerdesteyn V. Martial arts fall training to prevent hip fractures in the elderly. Osteoporos Int 2010;21(2):215-21.
    Pubmed CrossRef
  44. Campbell AJ, Robertson MC, Gardner MM, Norton RN, Tilyard MW, Buchner DM. Randomised controlled trial of a general practice programme of home based exercise to prevent falls in elderly women. BMJ 1997;315(7115):1065-9.
    Pubmed KoreaMed CrossRef
  45. Duque G, Boersma D, Loza-Diaz G, Hassan S, Suarez H, Geisinger D, et al. Effects of balance training using a virtual-reality system in older fallers. Clin Interv Aging 2013;8:257-63.
    Pubmed KoreaMed CrossRef
  46. Swanenburg J, de Bruin ED, Stauffacher M, Mulder T, Uebelhart D. Effects of exercise and nutrition on postural balance and risk of falling in elderly people with decreased bone mineral density: randomized controlled trial pilot study. Clin Rehabil 2007;21(6):523-34.
    Pubmed CrossRef
  47. Bentzen H, Bergland A, Forsén L. Risk of hip fractures in soft protected, hard protected, and unprotected falls. Inj Prev 2008;14(5):306-10.
    Pubmed CrossRef
  48. Cameron ID, Kurrle SE, Cumming RG, Quine S. Proximal femoral fracture while wearing correctly applied hip protectors. Age Ageing 2000;29(1):85-6.
    Pubmed CrossRef
  49. Kannus P, Parkkari J, Niemi S, Pasanen M, Palvanen M, Järvinen M, et al. Prevention of hip fracture in elderly people with use of a hip protector. N Engl J Med 2000;343(21):1506-13.
    Pubmed CrossRef
  50. Koike T, Orito Y, Toyoda H, Tada M, Sugama R, Hoshino M, et al. External hip protectors are effective for the elderly with higher-than-average risk factors for hip fractures. Osteoporos Int 2009;20(9):1613-20.
    Pubmed CrossRef
  51. Lauritzen JB, Petersen MM, Lund B. Effect of external hip protectors on hip fractures. Lancet 1993;341(8836):11-3.
    CrossRef
  52. Meyer G, Warnke A, Bender R, Mühlhauser I. Effect on hip fractures of increased use of hip protectors in nursing homes: cluster randomised controlled trial. BMJ 2003;326(7380):76.
    Pubmed KoreaMed CrossRef
  53. Cameron ID, Kurrle SE, Quine S, Sambrook PN, March L, Chan DK, et al. Improving adherence with the use of hip protectors among older people living in nursing care facilities: a cluster randomized trial. J Am Med Dir Assoc 2011;12(1):50-7.
    Pubmed CrossRef
  54. Cameron ID, Kurrle S, Quine S, Sambrook P, March L, Chan D, et al. Increasing adherence with the use of hip protectors for older people living in the community. Osteoporos Int 2011;22(2):617-26.
    Pubmed CrossRef
  55. Cameron ID, Cumming RG, Kurrle SE, Quine S, Lockwood K, Salkeld G, et al. A randomised trial of hip protector use by frail older women living in their own homes. Inj Prev 2003;9(2):138-41.
    Pubmed KoreaMed CrossRef
  56. Birks YF, Porthouse J, Addie C, Loughney K, Saxon L, Baverstock M, et al. Primary Care Hip Protector Trial Group. Randomized controlled trial of hip protectors among women living in the community. Osteoporos Int 2004;15(9):701-6.
    Pubmed CrossRef
  57. Kiel DP, Magaziner J, Zimmerman S, Ball L, Barton BA, Brown KM, et al. Efficacy of a hip protector to prevent hip fracture in nursing home residents: the HIP PRO randomized controlled trial. JAMA 2007;298(4):413-22.
    Pubmed CrossRef
  58. O'Halloran PD, Cran GW, Beringer TR, Kernohan G, O'Neill C, Orr J, et al. A cluster randomised controlled trial to evaluate a policy of making hip protectors available to residents of nursing homes. Age Ageing 2004;33(6):582-8.
    Pubmed CrossRef
  59. van Schoor NM, Smit JH, Twisk JW, Bouter LM, Lips P. Prevention of hip fractures by external hip protectors: a randomized controlled trial. JAMA 2003;289(15):1957-62.
    Pubmed CrossRef
  60. Birks YF, Hildreth R, Campbell P, Sharpe C, Torgerson DJ, Watt I. Randomised controlled trial of hip protectors for the prevention of second hip fractures. Age Ageing 2003;32(4):442-4.
    Pubmed CrossRef
  61. Harada A, Mizuno M, Takemura M, Tokuda H, Okuizumi H, Niino N. Hip fracture prevention trial using hip protectors in Japanese nursing homes. Osteoporos Int 2001;12(3):215-21.
    Pubmed CrossRef
  62. Garfinkel D, Radomislsky Z, Jamal S, Ben-Israel J. High efficacy for hip protectors in the prevention of hip fractures among elderly people with dementia. J Am Med Dir Assoc 2008;9(5):313-8.
    Pubmed CrossRef
  63. Juby AG. The challenges of interpreting efficacy of hip protector pads in fracture prevention in high-risk seniors. Clin Rheumatol 2009;28(6):723-7.
    Pubmed CrossRef
  64. Korall AMB, Feldman F, Yang Y, Cameron ID, Leung PM, Sims-Gould J, et al. Effectiveness of hip protectors to reduce risk for hip fracture from falls in long-term care. J Am Med Dir Assoc 2019;20(11):1397-403.e1.
    Pubmed CrossRef
  65. Woo J, Sum C, Yiu HH, Ip K, Chung L, Ho L. Efficacy of a specially designed hip protector for hip fracture prevention and compliance with use in elderly Hong Kong Chinese. Clin Rehabil 2003;17(2):203-5.
    Pubmed CrossRef
  66. Bentzen H, Bergland A, Forsén L. Predictors of uptake and adherence to the use of hip protectors among nursing-home residents. Eur J Ageing 2008;5(3):253-63.
    Pubmed KoreaMed CrossRef
  67. Forsén L, Arstad C, Sandvig S, Schuller A, Røed U, Søgaard AJ. Prevention of hip fracture by external hip protectors: an intervention in 17 nursing homes in two municipalities in Norway. Scand J Public Health 2003;31(4):261-6.
    Pubmed CrossRef
  68. Honkanen LA, Schackman BR, Mushlin AI, Lachs MS. A cost-benefit analysis of external hip protectors in the nursing home setting. J Am Geriatr Soc 2005;53(2):190-7.
    Pubmed CrossRef
  69. O'Halloran PD, Cran GW, Beringer TR, Kernohan G, Orr J, Dunlop L, et al. Factors affecting adherence to use of hip protectors amongst residents of nursing homes--a correlation study. Int J Nurs Stud 2007;44(5):672-86.
    Pubmed CrossRef
  70. Laing AC, Feldman F, Jalili M, Tsai CM, Robinovitch SN. The effects of pad geometry and material properties on the biomechanical effectiveness of 26 commercially available hip protectors. J Biomech 2011;44(15):2627-35.
    Pubmed KoreaMed CrossRef
  71. Laing AC, Robinovitch SN. Effect of soft shell hip protectors on pressure distribution to the hip during sideways falls. Osteoporos Int 2008;19(7):1067-75.
    Pubmed CrossRef
  72. Laing AC, Robinovitch SN. The force attenuation provided by hip protectors depends on impact velocity, pelvic size, and soft tissue stiffness. J Biomech Eng 2008;130(6):061005.
    Pubmed CrossRef
  73. Choi WJ, Hoffer JA, Robinovitch SN. Effect of hip protectors, falling angle and body mass index on pressure distribution over the hip during simulated falls. Clin Biomech (Bristol, Avon) 2010;25(1):63-9.
    Pubmed CrossRef
  74. Choi WJ, Hoffer JA, Robinovitch SN. The effect of positioning on the biomechanical performance of soft shell hip protectors. J Biomech 2010;43(5):818-25.
    Pubmed CrossRef
  75. Martel DR, Levine IC, Pretty SP, Laing AC. The influence of muscle activation on impact dynamics during lateral falls on the hip. J Biomech 2018;66:111-8.
    Pubmed CrossRef
  76. Pretty SP, Martel DR, Laing AC. The influence of body mass index, sex, & muscle activation on pressure distribution during lateral falls on the hip. Ann Biomed Eng 2017;45(12):2775-83.
    Pubmed CrossRef
  77. Groen BE, Weerdesteyn V, Duysens J. Martial arts fall techniques decrease the impact forces at the hip during sideways falling. J Biomech 2007;40(2):458-62.
    Pubmed CrossRef
  78. Weerdesteyn V, Groen BE, van Swigchem R, Duysens J. Martial arts fall techniques reduce hip impact forces in naive subjects after a brief period of training. J Electromyogr Kinesiol 2008;18(2):235-42.
    Pubmed CrossRef
  79. Robinovitch SN, Hayes WC, McMahon TA. Distribution of contact force during impact to the hip. Ann Biomed Eng 1997;25(3):499-508.
    Pubmed CrossRef
  80. van der Zijden AM, Groen BE, Tanck E, Nienhuis B, Verdonschot N, Weerdesteyn V. Can martial arts techniques reduce fall severity? An in vivo study of femoral loading configurations in sideways falls. J Biomech 2012;45(9):1650-5.
    Pubmed CrossRef
  81. Lim KT, Choi WJ. Effect of fall characteristics on the severity of hip impact during a fall on the ground from standing height. Osteoporos Int 2020;31(9):1713-9.
    Pubmed CrossRef
  82. DeGoede KM, Ashton-Miller JA. Fall arrest strategy affects peak hand impact force in a forward fall. J Biomech 2002;35(6):843-8.
    CrossRef
  83. Choi WJ, Robinovitch SN, Ross SA, Phan J, Cipriani D. Effect of neck flexor muscle activation on impact velocity of the head during backward falls in young adults. Clin Biomech (Bristol, Avon) 2017;49:28-33.
    Pubmed CrossRef
  84. Lo J, Ashton-Miller JA. Effect of pre-impact movement strategies on the impact forces resulting from a lateral fall. J Biomech 2008;41(9):1969-77.
    Pubmed KoreaMed CrossRef
  85. Choi WJ, Cripton PA, Robinovitch SN. Effects of hip abductor muscle forces and knee boundary conditions on femoral neck stresses during simulated falls. Osteoporos Int 2015;26(1):291-301.
    Pubmed CrossRef
  86. Choi WJ, Robinovitch SN. Effect of pelvis impact angle on stresses at the femoral neck during falls. J Biomech 2018;74:41-9.
    Pubmed CrossRef
  87. Uusi-Rasi K, Patil R, Karinkanta S, Kannus P, Tokola K, Lamberg-Allardt C, et al. Exercise and vitamin D in fall prevention among older women: a randomized clinical trial. JAMA Intern Med 2015;175(5):703-11.
    Pubmed CrossRef
  88. Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ, Staehelin HB, Meyer OW, Theiler R, et al. Monthly high-dose vitamin D treatment for the prevention of functional decline: a randomized clinical trial. JAMA Intern Med 2016;176(2):175-83.
    Pubmed CrossRef
  89. Smith LM, Gallagher JC, Suiter C. Medium doses of daily vitamin D decrease falls and higher doses of daily vitamin D3 increase falls: a randomized clinical trial. J Steroid Biochem Mol Biol 2017;173:317-22.
    Pubmed KoreaMed CrossRef
  90. Bogaerts A, Delecluse C, Boonen S, Claessens AL, Milisen K, Verschueren SM. Changes in balance, functional performance and fall risk following whole body vibration training and vitamin D supplementation in institutionalized elderly women. A 6 month randomized controlled trial. Gait Posture 2011;33(3):466-72.
    Pubmed CrossRef
  91. Bischoff-Ferrari HA, Conzelmann M, Stähelin HB, Dick W, Carpenter MG, Adkin AL, et al. Is fall prevention by vitamin D mediated by a change in postural or dynamic balance? Osteoporos Int 2006;17(5):656-63.
    Pubmed CrossRef
  92. Law M, Withers H, Morris J, Anderson F. Vitamin D supplementation and the prevention of fractures and falls: results of a randomised trial in elderly people in residential accommodation. Age Ageing 2006;35(5):482-6.
    Pubmed CrossRef
  93. Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA 2010;303(18):1815-22.
    Pubmed CrossRef
  94. Boersma D, Demontiero O, Mohtasham Amiri Z, Hassan S, Suarez H, Geisinger D, et al. Vitamin D status in relation to postural stability in the elderly. J Nutr Health Aging 2012;16(3):270-5.
    Pubmed CrossRef
  95. Mackey DC, Lachance CC, Wang PT, Feldman F, Laing AC, Leung PM, et al. The flooring for injury prevention (FLIP) study of compliant flooring for the prevention of fall-related injuries in long-term care: a randomized trial. PLoS Med 2019;16(6):e1002843.
    Pubmed KoreaMed CrossRef
  96. Simpson AH, Lamb S, Roberts PJ, Gardner TN, Evans JG. Does the type of flooring affect the risk of hip fracture? Age Ageing 2004;33(3):242-6.
    Pubmed CrossRef
  97. Laing AC, Robinovitch SN. Low stiffness floors can attenuate fall-related femoral impact forces by up to 50% without substantially impairing balance in older women. Accid Anal Prev 2009;41(3):642-50.
    Pubmed CrossRef
  98. Gustavsson J, Bonander C, Nilson F. A quasi-experimental evaluation of compliant flooring in a residential care setting. PLoS One 2018;13(7):e0201290.
    Pubmed KoreaMed CrossRef
  99. Wright AD, Laing AC. The influence of novel compliant floors on balance control in elderly women--a biomechanical study. Accid Anal Prev 2011;43(4):1480-7.
    Pubmed KoreaMed CrossRef
  100. Gustavsson J, Bonander C, Andersson R, Nilson F. Investigating the fall-injury reducing effect of impact absorbing flooring among female nursing home residents: initial results. Inj Prev 2015;21(5):320-4.
    Pubmed CrossRef

Article

Review Article

Phys. Ther. Korea 2021; 28(1): 1-12

Published online February 20, 2021 https://doi.org/10.12674/ptk.2021.28.1.1

Copyright © Korean Research Society of Physical Therapy.

The Literature Review on the Effectiveness of Fall-related Hip Fracture Prevention Programs

Se-young Lee , PT, BPT, Seung-su Kim , PT, BPT, Kitaek Lim , PT, BPT, Woochol Joseph Choi , PT, PhD

Injury Prevention and Biomechanics Laboratory, Department of Physical Therapy, Yonsei University, Wonju, Korea

Correspondence to:Woochol Joseph Choi
E-mail: wcjchoi@yonsei.ac.kr
https://orcid.org/0000-0002-6623-3806

Received: January 11, 2021; Revised: January 26, 2021; Accepted: January 27, 2021

Abstract

While efforts have been made to address fall-related injuries in older adults, the problem is unsolved to date. The purpose of this review is to provide a guideline for fall and injury prevention programs in older adults, based on evidence generated over the past 30 years. Research articles published between 1990 and 2020 have been searched on PubMed, using keywords, including but not limited to, falls, hip fracture, injuries, intervention, older adults, prevention, hip protector, vitamin D, safe landing strategy, and exercise. Total of 98 articles have been found and categorized into five intervention areas: exercise program, hip protector, safe landing strategy, vitamin D intake, and compliant flooring. Furthermore, the articles have been rated based on their study design: class 1, randomized controlled trials; class 2, nonrandomized controlled trials; class 3, experimental studies; class 4, all other studies. Exercise programs have shown to decrease the risk of fall, and associated injuries. Hip protectors, safe landing strategy, and vitamin D intake were effective in reducing a risk and incidence of hip fracture during a fall. Furthermore, compliant flooring has also decreased hip fracture risk without affecting balance. An integrated approach combining exercise program, wearing a hip protector, teaching safe landing strategies, scheduled vitamin D intake, and compliant flooring installation, is suggested to address fall-related injuries in older adults.

Keywords: Exercise, Falls, Hip fracture, Intervention, Older adults, Prevention

INTRODUCTION

노인 낙상을 줄이기 위해 많은 노력이 있었음에도 불구하고 지난 10여년간 노인의 넘어짐으로 인한 사망률은 지속적으로 증가했고, 2030년까지 시간당 7명의 사망률을 예측하고 있다[1]. 연구결과를 바탕으로 여러 중재법이 제시되어 오고 있음에도 불구하고, 노인 낙상 문제가 쉽게 해결되지 않는 이유는 증가하는 노인 인구에 있기도 하지만, 왜 넘어지고, 어떤 넘어짐이 골절을 유발하는지에 대한 불명확한 이해가 이유이기도 하다. 실제로 1%–2%의 노인의 넘어짐만이, 생명을 위협하는 고관절 골절을 일으키는데[2], 왜 그런지에 대한 명확한 이해는 부족한 실정이다. 다행히도 연구자들의 노력으로 골절 위험도에 영향을 미치는 10여 가지의 생체역학적 요인들이 확인되었고, 이를 바탕으로 중재법들이 제안되어 오고 있지만, 완전한 이해를 위해서는 지속적인 연구가 필요한 실정이다.

본 리뷰의 목적은, 현재까지 제시된 증거 기반 노인 넘어짐 및 고관절 골절 예방프로그램의 효과를 고찰하고, 노인 낙상예방을 위한 통합적인 중재법의 방향성을 제시함에 있다. 이를 위해, 현재까지 알려진 노인 낙상 예방 중재 방법을 운동프로그램(i.e., 균형능력증진, 근력강화, 지구력강화 등), 고관절 보호대의 사용, 안전하게 넘어지는 전략 (i.e., 구르기, 엉덩이와 무릎이 동시에 바닥에 닿기 등), 비타민 D 섭취, 그리고 충격 흡수 매트 등 5가지 영역으로 나누고, 각 영역별로 현재까지 출판된 논문을 정리하여 고찰하였다.

MATERIALS AND METHODS

1. 논문 검색 및 분류 방법

1990년부터 2020년까지 출판된 논문들이 PubMed를 통해 검색되었다. 사용된 키워드로는 Falls, hip fracture, injuries, intervention, older adults, prevention, hip protector, vitamin D, safe landing strategy, exercise 등을 포함했다. 검색 결과, 308개의 영어 논문이 검색되었으나, 종설 논문과 초록 및 원문 확인이 불가한 원저 논문, 그리고 Journal Citation Report에 색인되어 있지 않은 논문을 제외하여 총 117편의 논문이 확인되었다. Physical Therapy Korea 종설 논문 참고문헌 개수 제한에 따라 journal impact factor percentile 하위 19개의 논문을 제외하고, 총 98편의 논문이 운동프로그램(44편), 고관절 보호대(28편), 안전하게 넘어지는 전략(13편), 비타민 D 섭취(9편), 그리고 충격 흡수 매트(6편) 등 5가지 영역으로 나뉘어 고찰되었다(Table 1). 또한, 연구 논문 결과의 영향력을 구분하기 위해, 연구 디자인에 따라 다음의 네 개의 등급으로 나누어 고찰하였다. 1등급, 무작위대조실험연구(randomized controlled trials); 2등급, 대조실험연구(non-randomized controlled trials); 3등급, 대조군 없는 실험 연구(experimental studies); 4등급, 1, 2, 3등급에 속하지 않은 모든 유형의 연구(i.e., case study 등).

Table 1 . The number of articles included in this review.

InterventionsClass of evidenceaTotal

1234
Exercise programs3328144
Hip protector1459028
Safe landing strategy049013
Vitamin D intake81009
Compliant flooring12306

aClass 1: randomized controlled trials. Class 2: non-randomized controlled trials. Class 3: experimental studies with no control group. Class 4: studies not belonging to Class 1, 2, and 3 (i.e., case study).


RESULTS

1. 운동프로그램

노인의 균형 능력 증진을 통한 낙상예방을 위한 운동중재는 다양한 연구에서 검증되었으며, 연구들의 결과 변수에 따라 정적 균형, 동적 균형, 통합 균형(정적 균형과 통합 균형을 함께 확인하는 결과변수), 설문지, 넘어짐 또는 골절 횟수로 나누어 고찰되었다.

1) 정적 균형

압력 중심점의 궤도(trajectory of center of pressure)를 통해 균형 증진이 확인된 운동은 갑작스러운 속도 변화 훈련(unexpected perturbations training), 다감각 훈련(multisensory training), 시각 유도 무게 이동(visually guided weight-shifting), 보수와 스위스볼(Bosu and Swiss ball), 그룹 운동(group exercise) 등이 있었다(Table 2) [3-14]. 기능적 팔 뻗기 검사를 통해 균형 능력 증진이 확인된 운동은 태극권(Tai Chi), 흉부골반 보조 운동(thoracopelvic assisted movement) 등이 있었다. 한발 서기 검사를 통해 균형 증진을 확인한 운동은 그룹 운동(group exercise)이 있었다. 그 외 컴퓨터 게임을 적용하여 균형을 잃은 횟수를 통해 균형 능력 증진을 확인하였으며, 그룹 운동을 적용하여 균형감각조절임상검사를 통해 균형 능력 증진을 확인하였다.

Table 2 . Effect of exercise on static balance.

ArticlesClass of evidenceInterventionsOutcomesImprove
Kurz et al., 2016 [3]1Unexpected perturbation trainingCOPYes
Alfieri et al., 2012 [4]1Multisensory trainingCOPYes
Hatzitaki et al., 2009 [5]1Visually guided weight-shiftingCOPYes
Li et al., 2004 [6]1Tai ChiFRTYes
Cyarto et al., 2008 [7]1Group exerciseOLSYes
Szturm et al., 2011 [8]1Interactive computer gameLoss of balanceYes
Barnett et al., 2003 [9]1Group exerciseCOPYes
Jorgensen et al., 2013 [10]1Nintendo WiiCOPNo
Martínez-Amat et al., 2013 [11]2Bosu and Swiss ballCOPYes
Bulat et al., 2007 [12]3Group exercise1. COP2. CTSIB1. Yes2. Yes
Springer et al., 2018 [13]3Thoracopelvic assisted movementFRTYes
Sung et al., 2018 [14]4Tai ChiFRTYes

COP, center of pressure; FRT, functional reach test; OLS, one leg standing test; CTSIB, clinical test of sensory integration on balance.


2) 동적 균형

보행 속도 확인을 통해 균형 증진을 확인한 운동중재에는 노르딕 보행(Nordic walking), 흔들의자 가정기반운동(home-based rocking chair exercise), 강렬한 운동(intensive exercise), 시각 보조 트레드밀(projected visual context treadmill), 장기간 강화 및 균형 훈련(long-term strength and balance training), 넘어짐 예방 프로그램(fall prevention program), 흉부골반 보조 운동(thoracopelvic assisted movement), 태극권(Tai Chi), 이중 작업 훈련(dual-task training)이 있었다(Table 3) [15-23]. 보행 변수들을 통해 균형 증진을 확인한 운동은 이중 작업 훈련(dual-task training)이 있었다. 동적 보행 지수를 통해 균형 증진을 확인한 운동은 이중 작업 훈련(dual-task training), 태극권(Tai Chi), 물리치료중재(physical therapeutic intervention)가 있었다. 보행 중 총 이동거리를 통해 균형 증진을 확인한 운동은 수정된 오타고 운동 프로그램(modified Otago exercise program)이 있었다.

Table 3 . Effect of exercise on dynamic balance.

ArticlesClass of evidenceInterventionsOutcomesImprove
Gomeñuka et al., 2019 [15]1Nordic walkingGait speedYes
Niemelä et al., 2011 [16]1Home-based rocking-chair exerciseGait speedYes
Oh et al., 2012 [17]1Intensive exerciseGait speedYes
van Ooijen et al., 2016 [18]1Projected visual context treadmillGait speedYes
Li et al., 2004 [6]1Tai ChiDynamic gait indexYes
Wolf et al., 2001 [19]1Physical therapeutic interventionDynamic Gait IndexYes
Conradsson and Halvarsson, 2019 [20]1Dual-task balance trainingGait parametersYes
Barnett et al., 2003 [9]1Group exerciseGait speedNo
Springer et al., 2018 [13]3Thoracopelvic assisted movementGait speedYes
Li, 2014 [21]3Tai ChiGait speedYes
Dorfman et al., 2014 [22]3Dual-task training1. Gait speed2. Dynamic gait index1. Yes2. Yes
Renfro et al., 2016 [23]3Modified Otago exercise programTotal walk distanceYes

3) 통합 균형

정적 및 동적 균형을 함께 측정할 수 있는 임상균형측정 도구는 버그균형척도(Berg Balance scale, BBS), 일어서서 걷기검사(Timed Up and Go, TUG), 실행지향움직임 평가(Tinetti Performance Oriented Mobility Assessment, POMA), 플러턴 어드밴스드 균형척도(Fullernton Advanced Balance Scale), 의자에서 일어나기(Chair stand test), 8-foot up-and-go test, 수정된 운동수행검사(Physical Performance Test), 간편신체기능검사(Short Physical Performance Battery, SPPB) 등 다양했는데, 이러한 임상균형측정 도구를 이용해 균형 능력 증진을 확인한 운동은 더욱더 다양했다(Table 4) [24-36].

Table 4 . Effect of exercise on balance (studies using clinical balance measurement tools).

ArticlesClass of evidenceInterventionsOutcomesImprove
Binder et al., 2002 [24]1Intensive exercise trainingPerformance testYes
Cyarto et al., 2008 [7]1Group-based resistance and balancetraining8-foot up-and-go testYes
Frih et al., 2018 [25]1Combined exercise1. TUG2. Tinetti3. BBS1. Yes2. Yes3. Yes
Irandoust et al., 2019 [26]1Aquatic exerciseTinettiYes
Jorgensen et al., 2013 [10]1Nintendo Wii1. TUG2. Chair stand test1. Yes2. Yes
Lai et al., 2013 [27]1Video game with exercise1. BBS2. TUG1. Yes2. Yes
Leiros-Rodríguez and García-Soidan,2014 [28]1Balance training1. BBS2. TUG1. Yes2. Yes
Li et al., 2004 [6]1Tai ChiBBSYes
Li et al., 2018 [29]1Biofeedback balance training withfunctional electrical stimulationBBSYes
Mihailov and Popa, 2010 [30]1Long term exercise1. Tinetti2. TUG1. Yes2. Yes
Niemelä et al., 2011 [16]1Home-based rocking-chair exerciseBBSYes
Pollock et al., 2012 [31]1Whole body vibration with strengthand balance exerciseTUGYes
Pooranawatthanakul andFoongchomcheay, 2015 [32]1Video game (Wii)-based exercise1. BBS2. Fullerton1. Yes2. Yes
Steadman et al., 2003 [33]1Enhanced balance trainingBBSYes
Wolf et al., 2001 [19]1Balance trainingBBSYes
Zhang et al., 2014 [34]1Whole body vibrationTUGYes
Szturm et al., 2011 [8]1Interactive computer game exercise1. BBS2. TUG1. Yes2. No
Hale et al., 2012 [35]1Water based exerciseTUGNo
Sherrington et al., 2020 [36]1Recovery exercise after fractureSPPBNo
Martínez-Amat et al., 2013 [11]2Proprioception training1. BBS2. Tinetti1. Yes2. Yes
Bulat et al., 2007 [12]3Functional balance trainingBBSYes
Dorfman et al., 2014 [22]3Dual tasking on treadmillBBSYes
Li, 2014 [21]3Tai ChiTUGYes
Springer et al., 2018 [13]3Thoracopelvic assisted movement trainingTUGYes

4) 설문지

넘어짐 효능감 척도(fall efficacy scale)를 통해 균형 증진을 확인한 운동은 닌텐도 위(Nintendo Wii), 태극권(Tai Chi), 상호작용 비디오 게임(interactive video game), 기능적 전기 자극을 통한 시각 되먹임 기반 훈련(visual feedback based training with functional electric stimulation), 가정기반 운동 프로그램(home-based exercise program), 전신 진동(whole body vibration)이 있었다(Table 5) [37-43]. 행동특이적 균형 자신감 척도(activities-specific Balance Confidence Scale)를 통해 균형 증진을 확인한 운동은 지구력 저항 운동(endurance-resistance exercise), 니즈메겐 넘어짐 예방 프로그램(Nijmegen fall prevention program), 상호작용 컴퓨터 게임(interactive computer game), 전신 진동(whole body vibration)이 있었다. 두려움 척도(fear of falling)를 통해 균형 증진을 확인한 운동은 시각 보조 트레드밀(projected visual context treadmill), 기능적 순환 훈련(functional circuit training), 시각적 되먹임 균형 훈련(visual feedback based balance training), 태극권(Tai Chi)이 있었다.

Table 5 . Effect of exercise on balance (studies using questionnaires).

ArticlesClass of evidenceInterventionsOutcomesImprove
Frih et al., 2018 [25]1Endurance-resistance exerciseABCYes
Smulders et al., 2010 [37]1Nijmegen fall prevention programABCYes
Szturm et al., 2011 [8]1Interactive computer gameABCYes
Zhang et al., 2014 [34]1Whole body vibrationABCYes
Jorgensen et al., 2013 [10]1Nintendo WiiFESYes
Lai et al., 2013 [27]1Interactive video gameFESYes
Li et al., 2018 [29]1Visual feedback-based training with functionalelectric stimulationFESYes
Pollock et al., 2012 [31]1Whole body vibrationFESYes
van Ooijen et al., 2016 [18]1Projected visual context treadmillFear of fallingYes
Giné-Garriga et al., 2013 [38]1Functional circuit trainingFear of fallingYes
Sihvonen et al., 2004 [39]1Visual feedback-based balance trainingFear of fallingYes
Wolf et al., 1996 [40]1Tai ChiFear of fallingYes
Zeeuwe et al., 2006 [41]1Tai ChiFear of fallingYes
Cyarto et al., 2008 [7]1Group exerciseABCNo
Hale et al., 2012 [35]1Water-based exerciseABCNo
Kurz et al., 2016 [3]1Unexpected perturbations trainingFESNo
Barnett et al., 2003 [9]1Group exerciseFear of fallingNo
Wolf et al., 2001 [19]1Physical therapeutic interventionFear of fallingNo
Miller et al., 2010 [42]3Home-based exercise programFESYes
Groen et al., 2010 [43]3Martial artsFear of fallingYes

ABC, activities-specific balance confidence scale; FES, fall efficacy scale.


5) 넘어짐 및 골절 횟수

넘어짐 횟수(number of falls) 및 골절 횟수(fracture incidence)를 통해 낙상예방 효과를 확인한 운동은 가정 기반 운동(home based exercise), 가상 현실을 이용한 균형 운동(balance exercise with using virtual reality), 기능적 전기 자극을 함께 사용한 시각 되먹임 기반 힘판 훈련(visual feedback-based force platform training with functional electrical stimulation), 칼슘-비타민 보충제 복용과 함께한 운동(exercise with calcium and vitamin supplement), 시각 보조 트레드밀 (treadmill training with projected visual context), RESTORE 치료(RESTORE intervention) 등이 있었다(Table 6) [44-46].

Table 6 . Effect of exercise on fall and fracture incidence.

ArticlesClass of evidenceInterventionsOutcomesImprove
Campbell et al., 1997 [44]1Home based exerciseFall incidenceYes
Duque et al., 2013 [45]1Balance exercise using Virtual RealityFall incidenceYes
Li et al., 2018 [29]1Visual feedback-based force platform trainingwith functional electrical stimulation1. Fall incidence2. Fracture incidence1. Yes2. Yes
Sihvonen et al., 2004 [39]1Biofeedback balance trainingFall incidenceYes
Swanenburg et al., 2007 [46]1Exercise with calcium and vitamin supplementFall incidenceYes
van Ooijen et al., 2016 [18]1Treadmill training with projected visual contextFall incidenceNo
Sherrington et al., 2020 [36]1RESTORE interventionFall incidenceNo


2. 고관절 보호대

노인의 넘어질 때 발생하는 고관절 골절예방을 위한 고관절 보호대 효과를 검증한 연구에서 사용된 결과 변수로는 골절 발생률(hip fracture incidence), 넘어짐 및 부상에 대한 두려움(fear of fall and injury risk), 충격힘 등이 있었다. 넘어지는 상황에서 고관절 보호대가 잘 착용되어 있으면, 대퇴골에 가해지는 충격힘을 상당히 줄어서, 골절 발생률을 줄일 수 있었을 뿐 아니라, 넘어짐 및 부상에 대한 두려움도 상당히 감소됨을 확인할 수 있었다(Table 7) [47-74].

Table 7 . Effect of a hip protector on fall-related hip fracture risk.

ArticlesClass of evidenceInterventionsOutcomesImprove
Bentzen et al., 2008 [47]1Hip protectorHip fracture incidenceYes
Cameron et al., 2000 [48]1Hip protectorFear of fall and injury riskYes
Kannus et al., 2000 [49]1Hip protectorHip fracture incidenceYes
Koike et al., 2009 [50]1Hip protectorHip fracture incidenceYes
Lauritzen et al., 1993 [51]1Hip protectorHip fracture incidenceYes
Meyer et al., 2003 [52]1Hip protectorHip fracture incidenceYes
Cameron et al., 2011 [53]1Hip protector1. Fear of fall and injury risk2. Hip fracture incidence1. No2. No
Cameron et al., 2011 [54]1Hip protectorFear of fall and injury riskNo
Cameron et al., 2003 [55]1Hip protector1. Fear of fall and injury risk2. Hip fracture incidence1. No2. No
Birks et al., 2004 [56]1Hip protectorHip fracture incidenceNo
Kiel et al., 2007 [57]1Hip protectorHip fracture incidenceNo
O'Halloran et al., 2004 [58]1Hip protectorHip fracture incidenceNo
van Schoor et al., 2003 [59]1Hip protectorHip fracture incidenceNo
Birks et al., 2003 [60]1Hip protectorHip fracture incidenceNo
Harada et al., 2001 [61]2Hip protectorHip fracture incidenceYes
Garfinkel et al., 2008 [62]2Hip protectorHip fracture incidenceYes
Juby, 2009 [63]2Hip protectorHip fracture incidenceYes
Korall et al., 2019 [64]2Hip protectorHip fracture incidenceYes
Woo et al., 2003 [65]2Hip protectorHip fracture incidenceYes
Bentzen et al., 2008 [66]3Hip protectorHip fracture incidenceYes
Forsén et al., 2003 [67]3Hip protectorHip fracture incidenceYes
Honkanen et al., 2005 [68]3Hip protectorHip fracture incidenceYes
O'Halloran et al., 2007 [69]3Hip protectorHip fracture incidenceNo
Laing et al., 2011 [70]3Hip protectorHip impact forceYes
Laing and Robinovitch, 2008 [71]3Hip protectorHip impact forceYes
Laing and Robinovitch, 2008 [72]3Hip protectorHip impact forceYes
Choi et al., 2010 [73]3Hip protectorHip impact forceYes
Choi et al., 2010 [74]3Hip protectorHip impact forceYes


3. 안전하게 넘어지는 전략

넘어지는 방법에 따라 엉덩이가 바닥에 닿을 때 대퇴골에 가해지는 충격힘을 줄여 고관절 골절 위험도를 크게 낮출 수 있었는데, 안전한 넘어짐 전략은 넘어질 때 고관절 근 수축(hip muscle contraction), 무술(martial arts), 충격 시 몸통 및 무릎의 위치(trunk and knee position), 골반 충격 각도(pelvis impact angle), 팔 위치(arm configuration) 등이 있었다(Table 8) [75-86]. 특히 무술(martial arts), 목 근육 활성도(neck muscle activation) 등은 충격 속도를 줄여 골절 위험을 크게 낮추었다. 대퇴경부에 발생하는 스트레스 또는 축방향 힘을 줄인 전략은 고관절 벌림근력(hip abductor muscle forces), 충격 시 무릎의 위치(knee boundary conditions), 골반 충격 각도(pelvis impact angle)이 있었다.

Table 8 . Effect of safe landing strategies on fall-related hip fracture risk.

ArticlesClass of evidenceInterventionsOutcomesImprove
Martel et al., 2018 [75]2Hip muscle contractionHip impact forceYes
Pretty et al., 2017 [76]2Hip muscle contractionHip impact forceYes
Groen et al., 2007 [77]2Martial arts1. Hip impact force2. Hip impact velocity1. Yes2. Yes
Weerdesteyn et al., 2008 [78]2Martial arts1. Hip impact force2. Hip impact velocity1. Yes2. Yes
Robinovitch et al., 1997 [79]3Trunk positionHip impact forceYes
van der Zijden et al., 2012 [80]3Martial artsHip impact forceYes
Lim and Choi, 2020 [81]3Knee boundary conditionHip impact forceYes
Choi et al., 2010 [73]3Pelvis impact angleHip impact forceYes
DeGoede and Ashton-Miller, 2002 [82]3Arm configurationHip impact forceYes
Choi et al., 2017 [83]3Neck muscle activationHip impact velocityYes
Lo and Ashton-Miller, 2008 [84]3Segment movementHip impact forceYes
Choi et al., 2015 [85]3Hip abductor muscle forces,Knee boundary conditions1. Femoral neck stress2. Femoral neck force1. Yes2. Yes
Choi and Robinovitch, 2018 [86]3Pelvis impact angle1. Femoral neck stress2. Femoral neck force1. Yes2. Yes


4. 비타민 D 섭취

비타민 D 섭취가 낙상 예방에 미치는 효과를 검증한 연구들은 넘어짐 및 부상률(fall and injury rate), 넘어짐 위험률(fall risk), 균형 능력(balance), 자세불안정성(posture instability) 등의 결과 변수를 사용하였다. 비타민 D 섭취는 노인의 넘어짐 및 부상률뿐만 아니라 균형능력이 증진되어 넘어짐 위험률을 효과적으로 감소시켰다(Table 9) [87-94].

Table 9 . Effect of vitamin D intake on fall-related hip fracture risk.

ArticlesClass of evidenceInterventionsOutcomesImprove
Uusi-Rasi et al., 2015 [87]1Vitamin D (800 IU)Fall and injury rateYes
Bischoff-Ferrari et al., 2016 [88]1Vitamin DFall and injury rateYes
Smith et al., 2017 [89]1Vitamin D (4,000–4,800 IU)Fall and injury rateYes
Bogaerts et al., 2011 [90]1Vitamin D with squat1. Fall and injury rate2. Balance1. Yes2. Yes
Swanenburg et al., 2007 [46]1Vitamin D with protein, balance exercise1. Fall risk2. Balance1. Yes2. Yes
Bischoff-Ferrari et al., 2006 [91]1Vitamin D and calciumFall riskYes
Law et al., 2006 [92]1Vitamin DFall and injury rateNo
Sanders et al., 2010 [93]1Vitamin DFall and injury rateNo
Boersma et al., 2012 [94]2Vitamin DPostural instabilityYes


5. 충격 흡수 매트

노인 낙상 위험도는 바닥재에 따라 큰 영향을 받았는데, 고무 재질의 충격 흡수 매트는 균형에 나쁜 영향을 미치지 않으면서, 넘어질 때 발생하는 충격힘을 줄임으로써, 넘어짐 및 골절 위험도를 크게 낮추었다(Table 10) [95-100].

Table 10 . Effect of compliant flooring on fall-related hip fracture risk.

ArticlesClass of evidenceInterventionsOutcomesImprove
Mackey et al., 2019 [95]1Compliant (low-stiffness) flooringFall and injury riskNo
Simpson et al., 2004 [96]2Wooden carpeted floorsFall and injuryYes
Laing and Robinovitch, 2009 [97]2Smart Cell (low- stiffness)Hip impactYes
Gustavsson et al., 2018 [98]3Compliant (low-stiffness) flooringFall and injury riskYes
Wright and Laing, 2011 [99]3Smart Cell and SofTileFemur peak forceYes
Gustavsson et al., 2015 [100]3Impact absorbing flooringFall and injury riskYes

DISCUSSION

1. 운동프로그램

태극권, 전신 진동을 이용한 운동 그리고 닌텐도 위를 활용한 운동프로그램은 다른 운동들과 비교하였을 때, 많은 수의 논문들이 출판되었으며 대부분 무작위 대조군 실험을 통해 정적, 동적, 그리고 통합 균형 및 넘어짐 효능감과 두려움에 대해 효과가 있음을 밝혔으므로, 본 문헌 고찰에서는 해당 운동들을 권장한다.

그 외에, 낙상 횟수의 감소에 영향이 있었던 7개의 운동들은 대부분 무작위 대조군 실험을 통해 효과를 증명하였다. 하지만, 7개의 연구 중, 고관절 골절 횟수를 결과 변수로 포함시킨 연구는 1개에 불과했다. 골절예방을 위한 운동프로그램의 확실한 효과를 확인하기 위해 더 많은 연구가 필요해 보인다.

2. 고관절 보호대

임상 연구 결과에 따라 고관절 보호대의 고관절 골절 예방 효과에 대해 긍정적으로 보기도 하고 부정적으로 보기도 했다. 그러나 생체역학 연구에서는 넘어질 때 올바르게 착용된 고관절 보호대는 충격힘을 최대 50%까지 줄일 수 있어 고관절 골절 예방에 큰 도움이 된다고 보고한다. 이는, 고관절 보호대의 처방뿐 아니라, 실제로 잘 착용하고 있는지에 대한 확인 및 교육이 중요함을 말해 준다. 따라서, 노인 본인뿐 아니라 관련 보건의료 인력들은 고관절 보호대의 적절한 사용을 교육 및 모니터링 할 필요가 있다.

3. 안전하게 넘어지는 전략

안전한 넘어짐 전략은 넘어짐으로 인한 심각한 손상을 예방하기 위하여 중요하다. 본 문헌 고찰에서 제시된 연구들로 제안된 전략들은 대부분 넘어지는 동안 고관절과 머리에 가해지는 충격에 대하여 초점이 맞춰져 있었다. 안전한 전략의 정도를 논하기 위해서 연구들에서는 보통 충격힘(impact force)와 충격 속도(impact velocity) 그리고 뼈에 가해지는 스트레스와 축 방향 힘(stresses and axial forces)을 결과변수로 사용하였으며, 제시된 전략은 무술 동작을 하는 것(martial arts), 다른 방향으로 골반에 충격이 가도록 넘어지는 것(pelvis impact angle), 신체 분절의 위치를 바꿔 넘어지는 것(segment movement), 넘어지는 동안 근 수축을 하는 것(muscle activation during a fall)이 있었으며, 제시된 방법 모두 효과가 있다고 보고되었다. 그러나, 본 연구에서는 넘어지는 동안 노인에게 미칠 영향을 알고자 하였으나, 대부분의 연구가 젊은 대상자에게 넘어짐 전략을 적용하거나, 고관절 충격 시뮬레이터를 이용하여 노인의 뼈에 가해질 충격을 예측하였다. 노인에게 직접적으로 실험을 진행할 수 없었던 것은 실험 간 발생할 가능성이 있는 문제(예를 들면, 골절 및 타박상)를 마주하지 않기 위해서였으나, Groen 등[43]은 실제 노인을 대상으로 무술 훈련이 충격힘을 8%까지 줄일 수 있다는 것을 보고하였다.

4. 비타민 D 섭취

노쇠한 노인(비타민 D의 결핍이 있는 노인)의 넘어짐과 부상률을 예방하기 위해 비타민 D의 섭취가 권장됐고, 고용량 비타민 D (800 IU) 이상의 섭취는 넘어짐 및 부상으로부터 본인을 보호할 수 있었다. 낙상예방프로그램에 규칙적인 비타민 D 섭취 포함, 혹은 국가 복지 사업으로 고위험군 노인에게 비타민 D 보급 등을 통한 적극적인 대응은 노인 낙상 문제를 해결하는 데 도움이 될 것이다. 뿐만 아니라, 비타민 D 섭취와 병행하여 칼슘 섭취 및 운동을 실행하면 낙상 예방에 더 효과적인 것으로 보인다.

5. 충격 흡수 매트

충격 흡수 매트는 노인의 넘어짐 및 부상 위험률을 증가시키지 않는다고 하였다. 이는 일부 낮은 강성의 표면이 균형 유지 및 균형 회복 능력을 손상시켜 낙상 위험을 증가시킬 수 있다는 우려를 불식시키는 연구 결과이다[97]. 오히려, 넘어질 때 발생하는 충격힘을 최대 50%까지 줄여, 골절 위험률을 줄이게 된다. 충격 흡수 매트는 균형과 안정성에 영향을 미치지 않음과 동시에 낙상 시 발생하는 엉덩이 충격힘을 크게 줄이므로, 낙상 고위험군이 많이 모여 있는 시설 내에 설치되어야 하는 바닥재로 평가된다.

6. 본 문헌 고찰의 제한점

본 연구의 제한점은 많은 데이터베이스 중에서 하나의 데이터베이스(PubMed)만 사용되었다는 것이다. PubMed는 의학분야에서 가장 흔하게 사용되는 데이터베이스이기 때문에 본 문헌 고찰 결과에 사실성이 보장된다고 할 수 있지만, 다른 데이터베이스를 통해 획득되는 증거들 또한 함께 고려해 보아야 한다.

7. 고찰 결과 요약

노인 낙상예방을 위한 통합적인 중재법의 방향성을 제시하기 위해, 현재까지 제시된 증거 기반 노인 넘어짐 및 고관절 골절 예방프로그램의 효과를 고찰하였다. 위에서 고찰한 바와 같이, 노인 낙상 예방을 위한 다섯 가지 중재방법은 연구방법에 따라 영향력의 차이는 있었지만, 모두 효과적이었다. 상기 고찰 결과는 효과적인 노인 낙상 예방 프로그램을 개발하는 데 도움을 줄 것이다.

ACKNOWLEDGEMENTS

This study was supported by the “Brain Korea 21 FOUR Project”, the Korean Research Foundation for Department of Physical Therapy in the Graduate School of Yonsei University.

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

AUTHOR CONTRIBUTIONS

Conceptualization: WJC. Data curation: SL, SK, KL. Formal analysis: SL, SK, KL. Investigation: SL, SK, KL. Methodology: SL, SK, KL, WJC. Project administration: WJC. Resources: WJC. Supervision: WJC. Writing - original draft: SL, SK, KL, WJC. Writing - review & editing: WJC.

Table 1 . The number of articles included in this review.

InterventionsClass of evidenceaTotal

1234
Exercise programs3328144
Hip protector1459028
Safe landing strategy049013
Vitamin D intake81009
Compliant flooring12306

aClass 1: randomized controlled trials. Class 2: non-randomized controlled trials. Class 3: experimental studies with no control group. Class 4: studies not belonging to Class 1, 2, and 3 (i.e., case study).


Table 2 . Effect of exercise on static balance.

ArticlesClass of evidenceInterventionsOutcomesImprove
Kurz et al., 2016 [3]1Unexpected perturbation trainingCOPYes
Alfieri et al., 2012 [4]1Multisensory trainingCOPYes
Hatzitaki et al., 2009 [5]1Visually guided weight-shiftingCOPYes
Li et al., 2004 [6]1Tai ChiFRTYes
Cyarto et al., 2008 [7]1Group exerciseOLSYes
Szturm et al., 2011 [8]1Interactive computer gameLoss of balanceYes
Barnett et al., 2003 [9]1Group exerciseCOPYes
Jorgensen et al., 2013 [10]1Nintendo WiiCOPNo
Martínez-Amat et al., 2013 [11]2Bosu and Swiss ballCOPYes
Bulat et al., 2007 [12]3Group exercise1. COP2. CTSIB1. Yes2. Yes
Springer et al., 2018 [13]3Thoracopelvic assisted movementFRTYes
Sung et al., 2018 [14]4Tai ChiFRTYes

COP, center of pressure; FRT, functional reach test; OLS, one leg standing test; CTSIB, clinical test of sensory integration on balance.


Table 3 . Effect of exercise on dynamic balance.

ArticlesClass of evidenceInterventionsOutcomesImprove
Gomeñuka et al., 2019 [15]1Nordic walkingGait speedYes
Niemelä et al., 2011 [16]1Home-based rocking-chair exerciseGait speedYes
Oh et al., 2012 [17]1Intensive exerciseGait speedYes
van Ooijen et al., 2016 [18]1Projected visual context treadmillGait speedYes
Li et al., 2004 [6]1Tai ChiDynamic gait indexYes
Wolf et al., 2001 [19]1Physical therapeutic interventionDynamic Gait IndexYes
Conradsson and Halvarsson, 2019 [20]1Dual-task balance trainingGait parametersYes
Barnett et al., 2003 [9]1Group exerciseGait speedNo
Springer et al., 2018 [13]3Thoracopelvic assisted movementGait speedYes
Li, 2014 [21]3Tai ChiGait speedYes
Dorfman et al., 2014 [22]3Dual-task training1. Gait speed2. Dynamic gait index1. Yes2. Yes
Renfro et al., 2016 [23]3Modified Otago exercise programTotal walk distanceYes

Table 4 . Effect of exercise on balance (studies using clinical balance measurement tools).

ArticlesClass of evidenceInterventionsOutcomesImprove
Binder et al., 2002 [24]1Intensive exercise trainingPerformance testYes
Cyarto et al., 2008 [7]1Group-based resistance and balancetraining8-foot up-and-go testYes
Frih et al., 2018 [25]1Combined exercise1. TUG2. Tinetti3. BBS1. Yes2. Yes3. Yes
Irandoust et al., 2019 [26]1Aquatic exerciseTinettiYes
Jorgensen et al., 2013 [10]1Nintendo Wii1. TUG2. Chair stand test1. Yes2. Yes
Lai et al., 2013 [27]1Video game with exercise1. BBS2. TUG1. Yes2. Yes
Leiros-Rodríguez and García-Soidan,2014 [28]1Balance training1. BBS2. TUG1. Yes2. Yes
Li et al., 2004 [6]1Tai ChiBBSYes
Li et al., 2018 [29]1Biofeedback balance training withfunctional electrical stimulationBBSYes
Mihailov and Popa, 2010 [30]1Long term exercise1. Tinetti2. TUG1. Yes2. Yes
Niemelä et al., 2011 [16]1Home-based rocking-chair exerciseBBSYes
Pollock et al., 2012 [31]1Whole body vibration with strengthand balance exerciseTUGYes
Pooranawatthanakul andFoongchomcheay, 2015 [32]1Video game (Wii)-based exercise1. BBS2. Fullerton1. Yes2. Yes
Steadman et al., 2003 [33]1Enhanced balance trainingBBSYes
Wolf et al., 2001 [19]1Balance trainingBBSYes
Zhang et al., 2014 [34]1Whole body vibrationTUGYes
Szturm et al., 2011 [8]1Interactive computer game exercise1. BBS2. TUG1. Yes2. No
Hale et al., 2012 [35]1Water based exerciseTUGNo
Sherrington et al., 2020 [36]1Recovery exercise after fractureSPPBNo
Martínez-Amat et al., 2013 [11]2Proprioception training1. BBS2. Tinetti1. Yes2. Yes
Bulat et al., 2007 [12]3Functional balance trainingBBSYes
Dorfman et al., 2014 [22]3Dual tasking on treadmillBBSYes
Li, 2014 [21]3Tai ChiTUGYes
Springer et al., 2018 [13]3Thoracopelvic assisted movement trainingTUGYes

Table 5 . Effect of exercise on balance (studies using questionnaires).

ArticlesClass of evidenceInterventionsOutcomesImprove
Frih et al., 2018 [25]1Endurance-resistance exerciseABCYes
Smulders et al., 2010 [37]1Nijmegen fall prevention programABCYes
Szturm et al., 2011 [8]1Interactive computer gameABCYes
Zhang et al., 2014 [34]1Whole body vibrationABCYes
Jorgensen et al., 2013 [10]1Nintendo WiiFESYes
Lai et al., 2013 [27]1Interactive video gameFESYes
Li et al., 2018 [29]1Visual feedback-based training with functionalelectric stimulationFESYes
Pollock et al., 2012 [31]1Whole body vibrationFESYes
van Ooijen et al., 2016 [18]1Projected visual context treadmillFear of fallingYes
Giné-Garriga et al., 2013 [38]1Functional circuit trainingFear of fallingYes
Sihvonen et al., 2004 [39]1Visual feedback-based balance trainingFear of fallingYes
Wolf et al., 1996 [40]1Tai ChiFear of fallingYes
Zeeuwe et al., 2006 [41]1Tai ChiFear of fallingYes
Cyarto et al., 2008 [7]1Group exerciseABCNo
Hale et al., 2012 [35]1Water-based exerciseABCNo
Kurz et al., 2016 [3]1Unexpected perturbations trainingFESNo
Barnett et al., 2003 [9]1Group exerciseFear of fallingNo
Wolf et al., 2001 [19]1Physical therapeutic interventionFear of fallingNo
Miller et al., 2010 [42]3Home-based exercise programFESYes
Groen et al., 2010 [43]3Martial artsFear of fallingYes

ABC, activities-specific balance confidence scale; FES, fall efficacy scale.


Table 6 . Effect of exercise on fall and fracture incidence.

ArticlesClass of evidenceInterventionsOutcomesImprove
Campbell et al., 1997 [44]1Home based exerciseFall incidenceYes
Duque et al., 2013 [45]1Balance exercise using Virtual RealityFall incidenceYes
Li et al., 2018 [29]1Visual feedback-based force platform trainingwith functional electrical stimulation1. Fall incidence2. Fracture incidence1. Yes2. Yes
Sihvonen et al., 2004 [39]1Biofeedback balance trainingFall incidenceYes
Swanenburg et al., 2007 [46]1Exercise with calcium and vitamin supplementFall incidenceYes
van Ooijen et al., 2016 [18]1Treadmill training with projected visual contextFall incidenceNo
Sherrington et al., 2020 [36]1RESTORE interventionFall incidenceNo

Table 7 . Effect of a hip protector on fall-related hip fracture risk.

ArticlesClass of evidenceInterventionsOutcomesImprove
Bentzen et al., 2008 [47]1Hip protectorHip fracture incidenceYes
Cameron et al., 2000 [48]1Hip protectorFear of fall and injury riskYes
Kannus et al., 2000 [49]1Hip protectorHip fracture incidenceYes
Koike et al., 2009 [50]1Hip protectorHip fracture incidenceYes
Lauritzen et al., 1993 [51]1Hip protectorHip fracture incidenceYes
Meyer et al., 2003 [52]1Hip protectorHip fracture incidenceYes
Cameron et al., 2011 [53]1Hip protector1. Fear of fall and injury risk2. Hip fracture incidence1. No2. No
Cameron et al., 2011 [54]1Hip protectorFear of fall and injury riskNo
Cameron et al., 2003 [55]1Hip protector1. Fear of fall and injury risk2. Hip fracture incidence1. No2. No
Birks et al., 2004 [56]1Hip protectorHip fracture incidenceNo
Kiel et al., 2007 [57]1Hip protectorHip fracture incidenceNo
O'Halloran et al., 2004 [58]1Hip protectorHip fracture incidenceNo
van Schoor et al., 2003 [59]1Hip protectorHip fracture incidenceNo
Birks et al., 2003 [60]1Hip protectorHip fracture incidenceNo
Harada et al., 2001 [61]2Hip protectorHip fracture incidenceYes
Garfinkel et al., 2008 [62]2Hip protectorHip fracture incidenceYes
Juby, 2009 [63]2Hip protectorHip fracture incidenceYes
Korall et al., 2019 [64]2Hip protectorHip fracture incidenceYes
Woo et al., 2003 [65]2Hip protectorHip fracture incidenceYes
Bentzen et al., 2008 [66]3Hip protectorHip fracture incidenceYes
Forsén et al., 2003 [67]3Hip protectorHip fracture incidenceYes
Honkanen et al., 2005 [68]3Hip protectorHip fracture incidenceYes
O'Halloran et al., 2007 [69]3Hip protectorHip fracture incidenceNo
Laing et al., 2011 [70]3Hip protectorHip impact forceYes
Laing and Robinovitch, 2008 [71]3Hip protectorHip impact forceYes
Laing and Robinovitch, 2008 [72]3Hip protectorHip impact forceYes
Choi et al., 2010 [73]3Hip protectorHip impact forceYes
Choi et al., 2010 [74]3Hip protectorHip impact forceYes

Table 8 . Effect of safe landing strategies on fall-related hip fracture risk.

ArticlesClass of evidenceInterventionsOutcomesImprove
Martel et al., 2018 [75]2Hip muscle contractionHip impact forceYes
Pretty et al., 2017 [76]2Hip muscle contractionHip impact forceYes
Groen et al., 2007 [77]2Martial arts1. Hip impact force2. Hip impact velocity1. Yes2. Yes
Weerdesteyn et al., 2008 [78]2Martial arts1. Hip impact force2. Hip impact velocity1. Yes2. Yes
Robinovitch et al., 1997 [79]3Trunk positionHip impact forceYes
van der Zijden et al., 2012 [80]3Martial artsHip impact forceYes
Lim and Choi, 2020 [81]3Knee boundary conditionHip impact forceYes
Choi et al., 2010 [73]3Pelvis impact angleHip impact forceYes
DeGoede and Ashton-Miller, 2002 [82]3Arm configurationHip impact forceYes
Choi et al., 2017 [83]3Neck muscle activationHip impact velocityYes
Lo and Ashton-Miller, 2008 [84]3Segment movementHip impact forceYes
Choi et al., 2015 [85]3Hip abductor muscle forces,Knee boundary conditions1. Femoral neck stress2. Femoral neck force1. Yes2. Yes
Choi and Robinovitch, 2018 [86]3Pelvis impact angle1. Femoral neck stress2. Femoral neck force1. Yes2. Yes

Table 9 . Effect of vitamin D intake on fall-related hip fracture risk.

ArticlesClass of evidenceInterventionsOutcomesImprove
Uusi-Rasi et al., 2015 [87]1Vitamin D (800 IU)Fall and injury rateYes
Bischoff-Ferrari et al., 2016 [88]1Vitamin DFall and injury rateYes
Smith et al., 2017 [89]1Vitamin D (4,000–4,800 IU)Fall and injury rateYes
Bogaerts et al., 2011 [90]1Vitamin D with squat1. Fall and injury rate2. Balance1. Yes2. Yes
Swanenburg et al., 2007 [46]1Vitamin D with protein, balance exercise1. Fall risk2. Balance1. Yes2. Yes
Bischoff-Ferrari et al., 2006 [91]1Vitamin D and calciumFall riskYes
Law et al., 2006 [92]1Vitamin DFall and injury rateNo
Sanders et al., 2010 [93]1Vitamin DFall and injury rateNo
Boersma et al., 2012 [94]2Vitamin DPostural instabilityYes

Table 10 . Effect of compliant flooring on fall-related hip fracture risk.

ArticlesClass of evidenceInterventionsOutcomesImprove
Mackey et al., 2019 [95]1Compliant (low-stiffness) flooringFall and injury riskNo
Simpson et al., 2004 [96]2Wooden carpeted floorsFall and injuryYes
Laing and Robinovitch, 2009 [97]2Smart Cell (low- stiffness)Hip impactYes
Gustavsson et al., 2018 [98]3Compliant (low-stiffness) flooringFall and injury riskYes
Wright and Laing, 2011 [99]3Smart Cell and SofTileFemur peak forceYes
Gustavsson et al., 2015 [100]3Impact absorbing flooringFall and injury riskYes

References

  1. Burns E, Kakara R. Deaths from falls among persons aged ≥65 years - United States, 2007-2016. MMWR Morb Mortal Wkly Rep 2018;67(18):509-14.
    Pubmed KoreaMed CrossRef
  2. Sattin RW. Falls among older persons: a public health perspective. Annu Rev Public Health 1992;13:489-508.
    Pubmed CrossRef
  3. Kurz I, Gimmon Y, Shapiro A, Debi R, Snir Y, Melzer I. Unexpected perturbations training improves balance control and voluntary stepping times in older adults - a double blind randomized control trial. BMC Geriatr 2016;16:58.
    Pubmed KoreaMed CrossRef
  4. Alfieri FM, Riberto M, Gatz LS, Ribeiro CP, Lopes JA, Battistella LR. Comparison of multisensory and strength training for postural control in the elderly. Clin Interv Aging 2012;7:119-25.
    Pubmed KoreaMed CrossRef
  5. Hatzitaki V, Amiridis IG, Nikodelis T, Spiliopoulou S. Direction-induced effects of visually guided weight-shifting training on standing balance in the elderly. Gerontology 2009;55(2):145-52.
    Pubmed CrossRef
  6. Li F, Harmer P, Fisher KJ, McAuley E. Tai Chi: improving functional balance and predicting subsequent falls in older persons. Med Sci Sports Exerc 2004;36(12):2046-52.
    Pubmed CrossRef
  7. Cyarto EV, Brown WJ, Marshall AL, Trost SG. Comparative effects of home- and group-based exercise on balance confidence and balance ability in older adults: cluster randomized trial. Gerontology 2008;54(5):272-80.
    Pubmed CrossRef
  8. Szturm T, Betker AL, Moussavi Z, Desai A, Goodman V. Effects of an interactive computer game exercise regimen on balance impairment in frail community-dwelling older adults: a randomized controlled trial. Phys Ther 2011;91(10):1449-62.
    Pubmed CrossRef
  9. Barnett A, Smith B, Lord SR, Williams M, Baumand A. Community-based group exercise improves balance and reduces falls in at-risk older people: a randomised controlled trial. Age Ageing 2003;32(4):407-14.
    Pubmed CrossRef
  10. Jorgensen MG, Laessoe U, Hendriksen C, Nielsen OB, Aagaard P. Efficacy of Nintendo Wii training on mechanical leg muscle function and postural balance in community-dwelling older adults: a randomized controlled trial. J Gerontol A Biol Sci Med Sci 2013;68(7):845-52.
    Pubmed CrossRef
  11. Martínez-Amat A, Hita-Contreras F, Lomas-Vega R, Caballero-Martínez I, Alvarez PJ, Martínez-López E. Effects of 12-week proprioception training program on postural stability, gait, and balance in older adults: a controlled clinical trial. J Strength Cond Res 2013;27(8):2180-8.
    Pubmed CrossRef
  12. Bulat T, Hart-Hughes S, Ahmed S, Quigley P, Palacios P, Werner DC, et al. Effect of a group-based exercise program on balance in elderly. Clin Interv Aging 2007;2(4):655-60.
    Pubmed KoreaMed CrossRef
  13. Springer S, Friedman I, Ohry A. Thoracopelvic assisted movement training to improve gait and balance in elderly at risk of falling: a case series. Clin Interv Aging 2018;13:1143-9.
    Pubmed KoreaMed CrossRef
  14. Sung WH, Liu CC, Wei SH, Chuang LR, Chuang E, Wang KA, et al. Feasibility and outcome of an individualized Tai Chi program for improving balance and strength in the elderly: a pilot study. NeuroRehabilitation 2018;43(4):509-18.
    Pubmed CrossRef
  15. Gomeñuka NA, Oliveira HB, Silva ES, Costa RR, Kanitz AC, Liedtke GV, et al. Effects of Nordic walking training on quality of life, balance and functional mobility in elderly: a randomized clinical trial. PLoS One 2019;14(1):e0211472.
    Pubmed KoreaMed CrossRef
  16. Niemelä K, Väänänen I, Leinonen R, Laukkanen P. Benefits of home-based rocking-chair exercise for physical performance in community-dwelling elderly women: a randomized controlled trial. Aging Clin Exp Res 2011;23(4):279-87.
    Pubmed CrossRef
  17. Oh DH, Park JE, Lee ES, Oh SW, Cho SI, Jang SN, et al. Intensive exercise reduces the fear of additional falls in elderly people: findings from the Korea falls prevention study. Korean J Intern Med 2012;27(4):417-25.
    Pubmed KoreaMed CrossRef
  18. van Ooijen MW, Roerdink M, Trekop M, Janssen TW, Beek PJ. The efficacy of treadmill training with and without projected visual context for improving walking ability and reducing fall incidence and fear of falling in older adults with fall-related hip fracture: a randomized controlled trial. BMC Geriatr 2016;16(1):215.
    Pubmed KoreaMed CrossRef
  19. Wolf B, Feys H, De Weerdt, van der Meer J, Noom M, Aufdemkampe G, et al. Effect of a physical therapeutic intervention for balance problems in the elderly: a single-blind, randomized, controlled multicentre trial. Clin Rehabil 2001;15(6):624-36.
    Pubmed CrossRef
  20. Conradsson D, Halvarsson A. The effects of dual-task balance training on gait in older women with osteoporosis: a randomized controlled trial. Gait Posture 2019;68:562-8.
    Pubmed CrossRef
  21. Li F. The effects of Tai Ji Quan training on limits of stability in older adults. Clin Interv Aging 2014;9:1261-8.
    Pubmed KoreaMed CrossRef
  22. Dorfman M, Herman T, Brozgol M, Shema S, Weiss A, Hausdorff JM, et al. Dual-task training on a treadmill to improve gait and cognitive function in elderly idiopathic fallers. J Neurol Phys Ther 2014;38(4):246-53.
    Pubmed CrossRef
  23. Renfro M, Bainbridge DB, Smith ML. Validation of evidence-based fall prevention programs for adults with intellectual and/or developmental disorders: a modified Otago exercise program. Front Public Health 2016;4:261.
    Pubmed KoreaMed CrossRef
  24. Binder EF, Schechtman KB, Ehsani AA, Steger-May K, Brown M, Sinacore DR, et al. Effects of exercise training on frailty in community-dwelling older adults: results of a randomized, controlled trial. J Am Geriatr Soc 2002;50(12):1921-8.
    Pubmed CrossRef
  25. Frih B, Mkacher W, Jaafar H, Frih A, Ben Salah Z, El May M, et al. Specific balance training included in an endurance-resistance exercise program improves postural balance in elderly patients undergoing haemodialysis. Disabil Rehabil 2018;40(7):784-90.
    Pubmed CrossRef
  26. Irandoust K, Taheri M, Mirmoezzi M, H'mida C, Chtourou H, Trabelsi K, et al. The effect of aquatic exercise on postural mobility of healthy older adults with endomorphic somatotype. Int J Environ Res Public Health 2019;16(22):4387.
    Pubmed KoreaMed CrossRef
  27. Lai CH, Peng CW, Chen YL, Huang CP, Hsiao YL, Chen SC. Effects of interactive video-game based system exercise on the balance of the elderly. Gait Posture 2013;37(4):511-5.
    Pubmed CrossRef
  28. Leiros-Rodríguez R, García-Soidan JL. Balance training in elderly women using public parks. J Women Aging 2014;26(3):207-18.
    Pubmed CrossRef
  29. Li Z, Wang XX, Liang YY, Chen SY, Sheng J, Ma SJ. Effects of the visual-feedback-based force platform training with functional electric stimulation on the balance and prevention of falls in older adults: a randomized controlled trial. PeerJ 2018;6:e4244.
    Pubmed KoreaMed CrossRef
  30. Mihailov MV, Popa DM. Long term efficacy of exercise in reducing falls in elderly people. Osteoporos Int 2010;21:S754-5.
  31. Pollock RD, Martin FC, Newham DJ. Whole-body vibration in addition to strength and balance exercise for falls-related functional mobility of frail older adults: a single-blind randomized controlled trial. Clin Rehabil 2012;26(10):915-23.
    Pubmed CrossRef
  32. Pooranawatthanakul K, Foongchomcheay A. Effect of video game commercial on short term balance training in Thai elderly. Physiotherapy 2015;101(Suppl 1):eS398.
    CrossRef
  33. Steadman J, Donaldson N, Kalra L. A randomized controlled trial of an enhanced balance training program to improve mobility and reduce falls in elderly patients. J Am Geriatr Soc 2003;51(6):847-52.
    Pubmed CrossRef
  34. Zhang L, Weng C, Liu M, Wang Q, Liu L, He Y. Effect of whole-body vibration exercise on mobility, balance ability and general health status in frail elderly patients: a pilot randomized controlled trial. Clin Rehabil 2014;28(1):59-68.
    Pubmed CrossRef
  35. Hale LA, Waters D, Herbison P. A randomized controlled trial to investigate the effects of water-based exercise to improve falls risk and physical function in older adults with lower-extremity osteoarthritis. Arch Phys Med Rehabil 2012;93(1):27-34.
    Pubmed CrossRef
  36. Sherrington C, Fairhall N, Kirkham C, Clemson L, Tiedemann A, Vogler C, et al. Exercise to reduce mobility disability and prevent falls after fall-related leg or pelvic fracture: RESTORE randomized controlled trial. J Gen Intern Med 2020;35(10):2907-16.
    Pubmed KoreaMed CrossRef
  37. Smulders E, Weerdesteyn V, Groen BE, Duysens J, Eijsbouts A, Laan R, et al. Efficacy of a short multidisciplinary falls prevention program for elderly persons with osteoporosis and a fall history: a randomized controlled trial. Arch Phys Med Rehabil 2010;91(11):1705-11.
    Pubmed CrossRef
  38. Giné-Garriga M, Guerra M, Unnithan VB. The effect of functional circuit training on self-reported fear of falling and health status in a group of physically frail older individuals: a randomized controlled trial. Aging Clin Exp Res 2013;25(3):329-36.
    Pubmed CrossRef
  39. Sihvonen S, Sipilä S, Taskinen S, Era P. Fall incidence in frail older women after individualized visual feedback-based balance training. Gerontology 2004;50(6):411-6.
    Pubmed CrossRef
  40. Wolf SL, Barnhart HX, Kutner NG, McNeely E, Coogler C, Xu T. Reducing frailty and falls in older persons: an investigation of Tai Chi and computerized balance training. Atlanta FICSIT Group. Frailty and injuries: cooperative studies of intervention techniques. J Am Geriatr Soc 1996;44(5):489-97.
    Pubmed CrossRef
  41. Zeeuwe PE, Verhagen AP, Bierma-Zeinstra SM, van Rossum E, Faber MJ, Koes BW. The effect of Tai Chi Chuan in reducing falls among elderly people: design of a randomized clinical trial in the Netherlands [ISRCTN98840266]. BMC Geriatr 2006;6:6.
    Pubmed KoreaMed CrossRef
  42. Miller KL, Magel JR, Hayes JG. The effects of a home-based exercise program on balance confidence, balance performance, and gait in debilitated, ambulatory community-dwelling older adults: a pilot study. J Geriatr Phys Ther 2010;33(2):85-91.
  43. Groen BE, Smulders E, de Kam D, Duysens J, Weerdesteyn V. Martial arts fall training to prevent hip fractures in the elderly. Osteoporos Int 2010;21(2):215-21.
    Pubmed CrossRef
  44. Campbell AJ, Robertson MC, Gardner MM, Norton RN, Tilyard MW, Buchner DM. Randomised controlled trial of a general practice programme of home based exercise to prevent falls in elderly women. BMJ 1997;315(7115):1065-9.
    Pubmed KoreaMed CrossRef
  45. Duque G, Boersma D, Loza-Diaz G, Hassan S, Suarez H, Geisinger D, et al. Effects of balance training using a virtual-reality system in older fallers. Clin Interv Aging 2013;8:257-63.
    Pubmed KoreaMed CrossRef
  46. Swanenburg J, de Bruin ED, Stauffacher M, Mulder T, Uebelhart D. Effects of exercise and nutrition on postural balance and risk of falling in elderly people with decreased bone mineral density: randomized controlled trial pilot study. Clin Rehabil 2007;21(6):523-34.
    Pubmed CrossRef
  47. Bentzen H, Bergland A, Forsén L. Risk of hip fractures in soft protected, hard protected, and unprotected falls. Inj Prev 2008;14(5):306-10.
    Pubmed CrossRef
  48. Cameron ID, Kurrle SE, Cumming RG, Quine S. Proximal femoral fracture while wearing correctly applied hip protectors. Age Ageing 2000;29(1):85-6.
    Pubmed CrossRef
  49. Kannus P, Parkkari J, Niemi S, Pasanen M, Palvanen M, Järvinen M, et al. Prevention of hip fracture in elderly people with use of a hip protector. N Engl J Med 2000;343(21):1506-13.
    Pubmed CrossRef
  50. Koike T, Orito Y, Toyoda H, Tada M, Sugama R, Hoshino M, et al. External hip protectors are effective for the elderly with higher-than-average risk factors for hip fractures. Osteoporos Int 2009;20(9):1613-20.
    Pubmed CrossRef
  51. Lauritzen JB, Petersen MM, Lund B. Effect of external hip protectors on hip fractures. Lancet 1993;341(8836):11-3.
    CrossRef
  52. Meyer G, Warnke A, Bender R, Mühlhauser I. Effect on hip fractures of increased use of hip protectors in nursing homes: cluster randomised controlled trial. BMJ 2003;326(7380):76.
    Pubmed KoreaMed CrossRef
  53. Cameron ID, Kurrle SE, Quine S, Sambrook PN, March L, Chan DK, et al. Improving adherence with the use of hip protectors among older people living in nursing care facilities: a cluster randomized trial. J Am Med Dir Assoc 2011;12(1):50-7.
    Pubmed CrossRef
  54. Cameron ID, Kurrle S, Quine S, Sambrook P, March L, Chan D, et al. Increasing adherence with the use of hip protectors for older people living in the community. Osteoporos Int 2011;22(2):617-26.
    Pubmed CrossRef
  55. Cameron ID, Cumming RG, Kurrle SE, Quine S, Lockwood K, Salkeld G, et al. A randomised trial of hip protector use by frail older women living in their own homes. Inj Prev 2003;9(2):138-41.
    Pubmed KoreaMed CrossRef
  56. Birks YF, Porthouse J, Addie C, Loughney K, Saxon L, Baverstock M, et al. Primary Care Hip Protector Trial Group. Randomized controlled trial of hip protectors among women living in the community. Osteoporos Int 2004;15(9):701-6.
    Pubmed CrossRef
  57. Kiel DP, Magaziner J, Zimmerman S, Ball L, Barton BA, Brown KM, et al. Efficacy of a hip protector to prevent hip fracture in nursing home residents: the HIP PRO randomized controlled trial. JAMA 2007;298(4):413-22.
    Pubmed CrossRef
  58. O'Halloran PD, Cran GW, Beringer TR, Kernohan G, O'Neill C, Orr J, et al. A cluster randomised controlled trial to evaluate a policy of making hip protectors available to residents of nursing homes. Age Ageing 2004;33(6):582-8.
    Pubmed CrossRef
  59. van Schoor NM, Smit JH, Twisk JW, Bouter LM, Lips P. Prevention of hip fractures by external hip protectors: a randomized controlled trial. JAMA 2003;289(15):1957-62.
    Pubmed CrossRef
  60. Birks YF, Hildreth R, Campbell P, Sharpe C, Torgerson DJ, Watt I. Randomised controlled trial of hip protectors for the prevention of second hip fractures. Age Ageing 2003;32(4):442-4.
    Pubmed CrossRef
  61. Harada A, Mizuno M, Takemura M, Tokuda H, Okuizumi H, Niino N. Hip fracture prevention trial using hip protectors in Japanese nursing homes. Osteoporos Int 2001;12(3):215-21.
    Pubmed CrossRef
  62. Garfinkel D, Radomislsky Z, Jamal S, Ben-Israel J. High efficacy for hip protectors in the prevention of hip fractures among elderly people with dementia. J Am Med Dir Assoc 2008;9(5):313-8.
    Pubmed CrossRef
  63. Juby AG. The challenges of interpreting efficacy of hip protector pads in fracture prevention in high-risk seniors. Clin Rheumatol 2009;28(6):723-7.
    Pubmed CrossRef
  64. Korall AMB, Feldman F, Yang Y, Cameron ID, Leung PM, Sims-Gould J, et al. Effectiveness of hip protectors to reduce risk for hip fracture from falls in long-term care. J Am Med Dir Assoc 2019;20(11):1397-403.e1.
    Pubmed CrossRef
  65. Woo J, Sum C, Yiu HH, Ip K, Chung L, Ho L. Efficacy of a specially designed hip protector for hip fracture prevention and compliance with use in elderly Hong Kong Chinese. Clin Rehabil 2003;17(2):203-5.
    Pubmed CrossRef
  66. Bentzen H, Bergland A, Forsén L. Predictors of uptake and adherence to the use of hip protectors among nursing-home residents. Eur J Ageing 2008;5(3):253-63.
    Pubmed KoreaMed CrossRef
  67. Forsén L, Arstad C, Sandvig S, Schuller A, Røed U, Søgaard AJ. Prevention of hip fracture by external hip protectors: an intervention in 17 nursing homes in two municipalities in Norway. Scand J Public Health 2003;31(4):261-6.
    Pubmed CrossRef
  68. Honkanen LA, Schackman BR, Mushlin AI, Lachs MS. A cost-benefit analysis of external hip protectors in the nursing home setting. J Am Geriatr Soc 2005;53(2):190-7.
    Pubmed CrossRef
  69. O'Halloran PD, Cran GW, Beringer TR, Kernohan G, Orr J, Dunlop L, et al. Factors affecting adherence to use of hip protectors amongst residents of nursing homes--a correlation study. Int J Nurs Stud 2007;44(5):672-86.
    Pubmed CrossRef
  70. Laing AC, Feldman F, Jalili M, Tsai CM, Robinovitch SN. The effects of pad geometry and material properties on the biomechanical effectiveness of 26 commercially available hip protectors. J Biomech 2011;44(15):2627-35.
    Pubmed KoreaMed CrossRef
  71. Laing AC, Robinovitch SN. Effect of soft shell hip protectors on pressure distribution to the hip during sideways falls. Osteoporos Int 2008;19(7):1067-75.
    Pubmed CrossRef
  72. Laing AC, Robinovitch SN. The force attenuation provided by hip protectors depends on impact velocity, pelvic size, and soft tissue stiffness. J Biomech Eng 2008;130(6):061005.
    Pubmed CrossRef
  73. Choi WJ, Hoffer JA, Robinovitch SN. Effect of hip protectors, falling angle and body mass index on pressure distribution over the hip during simulated falls. Clin Biomech (Bristol, Avon) 2010;25(1):63-9.
    Pubmed CrossRef
  74. Choi WJ, Hoffer JA, Robinovitch SN. The effect of positioning on the biomechanical performance of soft shell hip protectors. J Biomech 2010;43(5):818-25.
    Pubmed CrossRef
  75. Martel DR, Levine IC, Pretty SP, Laing AC. The influence of muscle activation on impact dynamics during lateral falls on the hip. J Biomech 2018;66:111-8.
    Pubmed CrossRef
  76. Pretty SP, Martel DR, Laing AC. The influence of body mass index, sex, & muscle activation on pressure distribution during lateral falls on the hip. Ann Biomed Eng 2017;45(12):2775-83.
    Pubmed CrossRef
  77. Groen BE, Weerdesteyn V, Duysens J. Martial arts fall techniques decrease the impact forces at the hip during sideways falling. J Biomech 2007;40(2):458-62.
    Pubmed CrossRef
  78. Weerdesteyn V, Groen BE, van Swigchem R, Duysens J. Martial arts fall techniques reduce hip impact forces in naive subjects after a brief period of training. J Electromyogr Kinesiol 2008;18(2):235-42.
    Pubmed CrossRef
  79. Robinovitch SN, Hayes WC, McMahon TA. Distribution of contact force during impact to the hip. Ann Biomed Eng 1997;25(3):499-508.
    Pubmed CrossRef
  80. van der Zijden AM, Groen BE, Tanck E, Nienhuis B, Verdonschot N, Weerdesteyn V. Can martial arts techniques reduce fall severity? An in vivo study of femoral loading configurations in sideways falls. J Biomech 2012;45(9):1650-5.
    Pubmed CrossRef
  81. Lim KT, Choi WJ. Effect of fall characteristics on the severity of hip impact during a fall on the ground from standing height. Osteoporos Int 2020;31(9):1713-9.
    Pubmed CrossRef
  82. DeGoede KM, Ashton-Miller JA. Fall arrest strategy affects peak hand impact force in a forward fall. J Biomech 2002;35(6):843-8.
    CrossRef
  83. Choi WJ, Robinovitch SN, Ross SA, Phan J, Cipriani D. Effect of neck flexor muscle activation on impact velocity of the head during backward falls in young adults. Clin Biomech (Bristol, Avon) 2017;49:28-33.
    Pubmed CrossRef
  84. Lo J, Ashton-Miller JA. Effect of pre-impact movement strategies on the impact forces resulting from a lateral fall. J Biomech 2008;41(9):1969-77.
    Pubmed KoreaMed CrossRef
  85. Choi WJ, Cripton PA, Robinovitch SN. Effects of hip abductor muscle forces and knee boundary conditions on femoral neck stresses during simulated falls. Osteoporos Int 2015;26(1):291-301.
    Pubmed CrossRef
  86. Choi WJ, Robinovitch SN. Effect of pelvis impact angle on stresses at the femoral neck during falls. J Biomech 2018;74:41-9.
    Pubmed CrossRef
  87. Uusi-Rasi K, Patil R, Karinkanta S, Kannus P, Tokola K, Lamberg-Allardt C, et al. Exercise and vitamin D in fall prevention among older women: a randomized clinical trial. JAMA Intern Med 2015;175(5):703-11.
    Pubmed CrossRef
  88. Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ, Staehelin HB, Meyer OW, Theiler R, et al. Monthly high-dose vitamin D treatment for the prevention of functional decline: a randomized clinical trial. JAMA Intern Med 2016;176(2):175-83.
    Pubmed CrossRef
  89. Smith LM, Gallagher JC, Suiter C. Medium doses of daily vitamin D decrease falls and higher doses of daily vitamin D3 increase falls: a randomized clinical trial. J Steroid Biochem Mol Biol 2017;173:317-22.
    Pubmed KoreaMed CrossRef
  90. Bogaerts A, Delecluse C, Boonen S, Claessens AL, Milisen K, Verschueren SM. Changes in balance, functional performance and fall risk following whole body vibration training and vitamin D supplementation in institutionalized elderly women. A 6 month randomized controlled trial. Gait Posture 2011;33(3):466-72.
    Pubmed CrossRef
  91. Bischoff-Ferrari HA, Conzelmann M, Stähelin HB, Dick W, Carpenter MG, Adkin AL, et al. Is fall prevention by vitamin D mediated by a change in postural or dynamic balance? Osteoporos Int 2006;17(5):656-63.
    Pubmed CrossRef
  92. Law M, Withers H, Morris J, Anderson F. Vitamin D supplementation and the prevention of fractures and falls: results of a randomised trial in elderly people in residential accommodation. Age Ageing 2006;35(5):482-6.
    Pubmed CrossRef
  93. Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA 2010;303(18):1815-22.
    Pubmed CrossRef
  94. Boersma D, Demontiero O, Mohtasham Amiri Z, Hassan S, Suarez H, Geisinger D, et al. Vitamin D status in relation to postural stability in the elderly. J Nutr Health Aging 2012;16(3):270-5.
    Pubmed CrossRef
  95. Mackey DC, Lachance CC, Wang PT, Feldman F, Laing AC, Leung PM, et al. The flooring for injury prevention (FLIP) study of compliant flooring for the prevention of fall-related injuries in long-term care: a randomized trial. PLoS Med 2019;16(6):e1002843.
    Pubmed KoreaMed CrossRef
  96. Simpson AH, Lamb S, Roberts PJ, Gardner TN, Evans JG. Does the type of flooring affect the risk of hip fracture? Age Ageing 2004;33(3):242-6.
    Pubmed CrossRef
  97. Laing AC, Robinovitch SN. Low stiffness floors can attenuate fall-related femoral impact forces by up to 50% without substantially impairing balance in older women. Accid Anal Prev 2009;41(3):642-50.
    Pubmed CrossRef
  98. Gustavsson J, Bonander C, Nilson F. A quasi-experimental evaluation of compliant flooring in a residential care setting. PLoS One 2018;13(7):e0201290.
    Pubmed KoreaMed CrossRef
  99. Wright AD, Laing AC. The influence of novel compliant floors on balance control in elderly women--a biomechanical study. Accid Anal Prev 2011;43(4):1480-7.
    Pubmed KoreaMed CrossRef
  100. Gustavsson J, Bonander C, Andersson R, Nilson F. Investigating the fall-injury reducing effect of impact absorbing flooring among female nursing home residents: initial results. Inj Prev 2015;21(5):320-4.
    Pubmed CrossRef